These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 27696020)
1. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Souza LD; Simioni C; Bouzon ZL; Schneider RC; Gressler P; Miotto MC; Rossi MJ; Rörig LR Protoplasma; 2017 May; 254(3):1385-1398. PubMed ID: 27696020 [TBL] [Abstract][Full Text] [Related]
2. Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake. Tittel J; Bissinger V; Gaedke U; Kamjunke N Protist; 2005 Jun; 156(1):63-75. PubMed ID: 16048133 [TBL] [Abstract][Full Text] [Related]
3. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
4. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592 [TBL] [Abstract][Full Text] [Related]
5. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Zheng Y; Chi Z; Lucker B; Chen S Bioresour Technol; 2012 Jan; 103(1):484-8. PubMed ID: 22023968 [TBL] [Abstract][Full Text] [Related]
6. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Yu X; Zhao P; He C; Li J; Tang X; Zhou J; Huang Z Bioresour Technol; 2012 Oct; 121():256-62. PubMed ID: 22858494 [TBL] [Abstract][Full Text] [Related]
7. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212. Toyoshima M; Sato N Plant Cell Physiol; 2015 Dec; 56(12):2447-56. PubMed ID: 26542110 [TBL] [Abstract][Full Text] [Related]
8. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
9. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes. Santos CA; Ferreira ME; da Silva TL; Gouveia L; Novais JM; Reis A J Ind Microbiol Biotechnol; 2011 Aug; 38(8):909-17. PubMed ID: 20824486 [TBL] [Abstract][Full Text] [Related]
10. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. Ratha SK; Babu S; Renuka N; Prasanna R; Prasad RB; Saxena AK J Basic Microbiol; 2013 May; 53(5):440-50. PubMed ID: 22736510 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous bioremediation of Disperse orange-2RL Azo dye and fatty acids production by Scenedesmus obliquus cultured under mixotrophic and heterotrophic conditions. Hamouda RA; El-Naggar NE; Abou-El-Souod GW Sci Rep; 2022 Dec; 12(1):20768. PubMed ID: 36456621 [TBL] [Abstract][Full Text] [Related]
12. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Poerschmann J; Spijkerman E; Langer U Microb Ecol; 2004 Jul; 48(1):78-89. PubMed ID: 15107953 [TBL] [Abstract][Full Text] [Related]
13. Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae. Leite GB; Paranjape K; Abdelaziz AEM; Hallenbeck PC Bioresour Technol; 2015 May; 184():123-130. PubMed ID: 25466992 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071 [TBL] [Abstract][Full Text] [Related]
15. Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility. Spijkerman E; Lukas M; Wacker A Phytochemistry; 2017 Dec; 144():43-51. PubMed ID: 28881198 [TBL] [Abstract][Full Text] [Related]
16. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions. Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451 [TBL] [Abstract][Full Text] [Related]
17. Carotenoid and fatty acid compositions of an indigenous Ettlia texensis isolate (Chlorophyceae) under phototrophic and mixotrophic conditions. Yıldırım A; Demirel Z; İşleten-Hoşoğlu M; Akgün İH; Hatipoğlu-Uslu S; Conk-Dalay M Appl Biochem Biotechnol; 2014 Feb; 172(3):1307-19. PubMed ID: 24166102 [TBL] [Abstract][Full Text] [Related]
18. Acid Tolerant and Acidophilic Microalgae: An Underexplored World of Biotechnological Opportunities. Abiusi F; Trompetter E; Pollio A; Wijffels RH; Janssen M Front Microbiol; 2022; 13():820907. PubMed ID: 35154060 [TBL] [Abstract][Full Text] [Related]
19. Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Nakanishi A; Aikawa S; Ho SH; Chen CY; Chang JS; Hasunuma T; Kondo A Bioresour Technol; 2014; 152():247-52. PubMed ID: 24296120 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for biodiesel production. Engin IK; Cekmecelioglu D; Yücel AM; Oktem HA Bioresour Technol; 2018 Mar; 251():128-134. PubMed ID: 29274519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]