These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 27696240)
1. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions. Gathiaka S; Liu S; Chiu M; Yang H; Stuckey JA; Kang YN; Delproposto J; Kubish G; Dunbar JB; Carlson HA; Burley SK; Walters WP; Amaro RE; Feher VA; Gilson MK J Comput Aided Mol Des; 2016 Sep; 30(9):651-668. PubMed ID: 27696240 [TBL] [Abstract][Full Text] [Related]
2. Improved pose and affinity predictions using different protocols tailored on the basis of data availability. Prathipati P; Nagao C; Ahmad S; Mizuguchi K J Comput Aided Mol Des; 2016 Sep; 30(9):817-828. PubMed ID: 27714493 [TBL] [Abstract][Full Text] [Related]
3. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. Kumar A; Zhang KY J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214 [TBL] [Abstract][Full Text] [Related]
4. Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge. Ye Z; Baumgartner MP; Wingert BM; Camacho CJ J Comput Aided Mol Des; 2016 Sep; 30(9):695-706. PubMed ID: 27573981 [TBL] [Abstract][Full Text] [Related]
5. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018 [TBL] [Abstract][Full Text] [Related]
6. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015. Xu X; Yan C; Zou X J Comput Aided Mol Des; 2017 Aug; 31(8):689-699. PubMed ID: 28668990 [TBL] [Abstract][Full Text] [Related]
7. Blinded predictions of binding modes and energies of HSP90-α ligands for the 2015 D3R grand challenge. Mey ASJS; Juárez-Jiménez J; Hennessy A; Michel J Bioorg Med Chem; 2016 Oct; 24(20):4890-4899. PubMed ID: 27485604 [TBL] [Abstract][Full Text] [Related]
8. Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets. Selwa E; Martiny VY; Iorga BI J Comput Aided Mol Des; 2016 Sep; 30(9):829-839. PubMed ID: 27699554 [TBL] [Abstract][Full Text] [Related]
9. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation. Grudinin S; Kadukova M; Eisenbarth A; Marillet S; Cazals F J Comput Aided Mol Des; 2016 Sep; 30(9):791-804. PubMed ID: 27718029 [TBL] [Abstract][Full Text] [Related]
10. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2. Athanasiou C; Vasilakaki S; Dellis D; Cournia Z J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352 [TBL] [Abstract][Full Text] [Related]
11. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015. Slynko I; Da Silva F; Bret G; Rognan D J Comput Aided Mol Des; 2016 Sep; 30(9):669-683. PubMed ID: 27480696 [TBL] [Abstract][Full Text] [Related]
12. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797 [TBL] [Abstract][Full Text] [Related]
13. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. Gao YD; Hu Y; Crespo A; Wang D; Armacost KA; Fells JI; Fradera X; Wang H; Wang H; Sherborne B; Verras A; Peng Z J Comput Aided Mol Des; 2018 Jan; 32(1):129-142. PubMed ID: 28986733 [TBL] [Abstract][Full Text] [Related]
15. Docking-undocking combination applied to the D3R Grand Challenge 2015. Ruiz-Carmona S; Barril X J Comput Aided Mol Des; 2016 Sep; 30(9):805-815. PubMed ID: 27709317 [TBL] [Abstract][Full Text] [Related]
16. Interaction with specific HSP90 residues as a scoring function: validation in the D3R Grand Challenge 2015. Santos-Martins D J Comput Aided Mol Des; 2016 Sep; 30(9):731-742. PubMed ID: 27549813 [TBL] [Abstract][Full Text] [Related]
17. D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. Gaieb Z; Liu S; Gathiaka S; Chiu M; Yang H; Shao C; Feher VA; Walters WP; Kuhn B; Rudolph MG; Burley SK; Gilson MK; Amaro RE J Comput Aided Mol Des; 2018 Jan; 32(1):1-20. PubMed ID: 29204945 [TBL] [Abstract][Full Text] [Related]
18. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2. da Silva Figueiredo Celestino Gomes P; Da Silva F; Bret G; Rognan D J Comput Aided Mol Des; 2018 Jan; 32(1):75-87. PubMed ID: 28766097 [TBL] [Abstract][Full Text] [Related]
19. Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2. Baumgartner MP; Evans DA J Comput Aided Mol Des; 2018 Jan; 32(1):45-58. PubMed ID: 29127581 [TBL] [Abstract][Full Text] [Related]
20. DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015. Salmaso V; Sturlese M; Cuzzolin A; Moro S J Comput Aided Mol Des; 2016 Sep; 30(9):773-789. PubMed ID: 27638810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]