BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27696246)

  • 1. The Importance of Properly Compensating for Head Movements During MEG Acquisition Across Different Age Groups.
    Larson E; Taulu S
    Brain Topogr; 2017 Mar; 30(2):172-181. PubMed ID: 27696246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifact and head movement compensation in MEG.
    Medvedovsky M; Taulu S; Bikmullina R; Paetau R
    Neurol Neurophysiol Neurosci; 2007 Oct; ():4. PubMed ID: 18066426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Head movements of children in MEG: quantification, effects on source estimation, and compensation.
    Wehner DT; Hämäläinen MS; Mody M; Ahlfors SP
    Neuroimage; 2008 Apr; 40(2):541-550. PubMed ID: 18252273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography.
    Nenonen J; Nurminen J; Kičić D; Bikmullina R; Lioumis P; Jousmäki V; Taulu S; Parkkonen L; Putaala M; Kähkönen S
    Clin Neurophysiol; 2012 Nov; 123(11):2180-91. PubMed ID: 22633918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEG recordings of DC fields using the signal space separation method (SSS).
    Taulu S; Simola J; Kajola M
    Neurol Clin Neurophysiol; 2004 Nov; 2004():35. PubMed ID: 16012635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity.
    Messaritaki E; Koelewijn L; Dima DC; Williams GM; Perry G; Singh KD
    Neuroimage; 2017 Oct; 159():302-324. PubMed ID: 28735011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online and offline tools for head movement compensation in MEG.
    Stolk A; Todorovic A; Schoffelen JM; Oostenveld R
    Neuroimage; 2013 Mar; 68():39-48. PubMed ID: 23246857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying Brain Function in Children Using Magnetoencephalography.
    Rapaport H; Seymour RA; Sowman PF; Benikos N; Stylianou E; Johnson BW; Crain S; He W
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31009000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration.
    Pfeiffer C; Ruffieux S; Andersen LM; Kalabukhov A; Winkler D; Oostenveld R; Lundqvist D; Schneiderman JF
    Neuroimage; 2020 May; 212():116686. PubMed ID: 32119981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoencephalography is feasible for infant assessment of auditory discrimination.
    Cheour M; Imada T; Taulu S; Ahonen A; Salonen J; Kuhl P
    Exp Neurol; 2004 Nov; 190 Suppl 1():S44-51. PubMed ID: 15498541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoencephalography for clinical pediatrics: the effect of head positioning on measurement of somatosensory-evoked fields.
    Gaetz W; Otsubo H; Pang EW
    Clin Neurophysiol; 2008 Aug; 119(8):1923-1933. PubMed ID: 18579439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous head-localization and data correction in a whole-cortex MEG sensor.
    Wilson HS
    Neurol Clin Neurophysiol; 2004 Nov; 2004():56. PubMed ID: 16012679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual MEG Helmet: Computer Simulation of an Approach to Neuromagnetic Field Sampling.
    Medvedovsky M; Nenonen J; Koptelova A; Butorina A; Paetau R; Mäkelä JP; Ahonen A; Simola J; Gazit T; Taulu S
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):539-48. PubMed ID: 25616085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array.
    Johnson BW; Crain S; Thornton R; Tesan G; Reid M
    Clin Neurophysiol; 2010 Mar; 121(3):340-9. PubMed ID: 19955015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal neural interactions underlying continuous drawing movements as revealed by magnetoencephalography.
    Christopoulos VN; Leuthold AC; Georgopoulos AP
    Exp Brain Res; 2012 Oct; 222(1-2):159-71. PubMed ID: 22923206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.
    David O; Garnero L; Cosmelli D; Varela FJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):975-87. PubMed ID: 12214887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Localization Accuracy of Neural Sources by Pre-processing: Demonstration With Infant MEG Data.
    Clarke MD; Larson E; Peterson ER; McCloy DR; Bosseler AN; Taulu S
    Front Neurol; 2022; 13():827529. PubMed ID: 35401424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision magnetic field modelling and control for wearable magnetoencephalography.
    Rea M; Holmes N; Hill RM; Boto E; Leggett J; Edwards LJ; Woolger D; Dawson E; Shah V; Osborne J; Bowtell R; Brookes MJ
    Neuroimage; 2021 Nov; 241():118401. PubMed ID: 34273527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-free magnetoencephalography recordings of brain function.
    Volegov P; Matlachov A; Mosher J; Espy MA; Kraus RH
    Phys Med Biol; 2004 May; 49(10):2117-28. PubMed ID: 15214546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts.
    Fujiwara Y; Yamashita O; Kawawaki D; Doya K; Kawato M; Toyama K; Sato MA
    Neuroimage; 2009 Apr; 45(2):393-409. PubMed ID: 19150653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.