These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27696370)

  • 1. Nano-mechanical characterization of disassembling amyloid fibrils using the Peak Force QNM method.
    Wang W; Guo Z; Sun J; Li Z
    Biopolymers; 2017 Feb; 107(2):61-69. PubMed ID: 27696370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method.
    Adamcik J; Lara C; Usov I; Jeong JS; Ruggeri FS; Dietler G; Lashuel HA; Hamley IW; Mezzenga R
    Nanoscale; 2012 Aug; 4(15):4426-9. PubMed ID: 22688679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of amyloid-like fibrils defined by secondary structures.
    Bortolini C; Jones NC; Hoffmann SV; Wang C; Besenbacher F; Dong M
    Nanoscale; 2015 May; 7(17):7745-52. PubMed ID: 25839069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the nature interactions of β-amyloid protein by a nanoprobe method.
    Caballero L; Mena J; Morales-Alvarez A; Kogan MJ; Melo F
    Langmuir; 2015; 31(1):299-306. PubMed ID: 25486322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile disassembly of amyloid fibrils using gemini surfactant micelles.
    Han Y; He C; Cao M; Huang X; Wang Y; Li Z
    Langmuir; 2010 Feb; 26(3):1583-7. PubMed ID: 20000629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the beta-sheet-breaker peptide LPFFD on oriented network of amyloid β25-35 fibrils.
    Murvai U; Soós K; Penke B; Kellermayer MS
    J Mol Recognit; 2011; 24(3):453-60. PubMed ID: 21504023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible mechanical unzipping of amyloid beta-fibrils.
    Kellermayer MS; Grama L; Karsai A; Nagy A; Kahn A; Datki ZL; Penke B
    J Biol Chem; 2005 Mar; 280(9):8464-70. PubMed ID: 15596431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disassembly of amyloid fibrils by premicellar and micellar aggregates of a tetrameric cationic surfactant in aqueous solution.
    He C; Hou Y; Han Y; Wang Y
    Langmuir; 2011 Apr; 27(8):4551-6. PubMed ID: 21438511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oriented epitaxial growth of amyloid fibrils of the N27C mutant beta 25-35 peptide.
    Karsai A; Murvai U; Soós K; Penke B; Kellermayer MS
    Eur Biophys J; 2008 Sep; 37(7):1133-7. PubMed ID: 18189132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils.
    Petkova AT; Leapman RD; Guo Z; Yau WM; Mattson MP; Tycko R
    Science; 2005 Jan; 307(5707):262-5. PubMed ID: 15653506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of fibrillogenesis of amyloid beta(1-40) peptide with cationic gemini surfactant.
    Cao M; Han Y; Wang J; Wang Y
    J Phys Chem B; 2007 Nov; 111(47):13436-43. PubMed ID: 17983218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy.
    Serem WK; Bett CK; Ngunjiri JN; Garno JC
    Microsc Res Tech; 2011 Jul; 74(7):699-708. PubMed ID: 21698718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Aβ(1-40) peptide fibrillar architectures by Aβ-based peptide amphiphiles.
    He C; Han Y; Zhu L; Deng M; Wang Y
    J Phys Chem B; 2013 Sep; 117(36):10475-83. PubMed ID: 23957218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes.
    Dokukin ME; Sokolov I
    Langmuir; 2012 Nov; 28(46):16060-71. PubMed ID: 23113608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical Characteristics of Human Neuroblastoma Cell in Oligomeric $\beta $ -Amyloid (1-40) Cytotoxicity.
    Gao Q; Fang Y; Zhang S; Li HW; Yung KKL; Lai KWC
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):70-77. PubMed ID: 29570077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli.
    Lamour G; Yip CK; Li H; Gsponer J
    ACS Nano; 2014 Apr; 8(4):3851-61. PubMed ID: 24588725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of Size of Folding Nuclei of Fibrils Formed from Recombinant Aβ(1-40) Peptide.
    Grigorashvili EI; Selivanova OM; Dovidchenko NV; Dzhus UF; Mikhailina AO; Suvorina MY; Marchenkov VV; Surin AK; Galzitskaya OV
    Biochemistry (Mosc); 2016 May; 81(5):538-47. PubMed ID: 27297904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Dissociation Mechanism of Single-Walled Carbon Nanotube on Mature Amyloid-β Fibrils at Single Nanotube Level.
    Lin D; Lei J; Li S; Zhou X; Wei G; Yang X
    J Phys Chem B; 2020 Apr; 124(17):3459-3468. PubMed ID: 32283926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.