These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 27696510)
1. Response and recovery of the macrophytes Elodea canadensis and Myriophyllum spicatum following a pulse exposure to the herbicide iofensulfuron-sodium in outdoor stream mesocosms. Wieczorek MV; Bakanov N; Lagadic L; Bruns E; Schulz R Environ Toxicol Chem; 2017 Apr; 36(4):1090-1100. PubMed ID: 27696510 [TBL] [Abstract][Full Text] [Related]
2. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Knauert S; Singer H; Hollender J; Knauer K Environ Pollut; 2010 Jan; 158(1):167-74. PubMed ID: 19656602 [TBL] [Abstract][Full Text] [Related]
3. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing. Knauer K; Mohr S; Feiler U Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155 [TBL] [Abstract][Full Text] [Related]
4. A toxicokinetic and toxicodynamic modeling approach using Myriophyllum spicatum to predict effects caused by short-term exposure to a sulfonylurea. Heine S; Schild F; Schmitt W; Krebber R; Görlitz G; Preuss TG Environ Toxicol Chem; 2016 Feb; 35(2):376-84. PubMed ID: 26174603 [TBL] [Abstract][Full Text] [Related]
5. Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems. Wendt-Rasch L; Pirzadeh P; Woin P Aquat Toxicol; 2003 May; 63(3):243-56. PubMed ID: 12711414 [TBL] [Abstract][Full Text] [Related]
6. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. King RS; Brain RA; Back JA; Becker C; Wright MV; Djomte VT; Scott WC; Virgil SR; Brooks BW; Hosmer AJ; Chambliss CK Environ Toxicol Chem; 2016 Mar; 35(3):660-75. PubMed ID: 26292195 [TBL] [Abstract][Full Text] [Related]
7. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides? Nuttens A; Chatellier S; Devin S; Guignard C; Lenouvel A; Gross EM Aquat Toxicol; 2016 Aug; 177():355-64. PubMed ID: 27371928 [TBL] [Abstract][Full Text] [Related]
8. Macrophytes are highly sensitive to the herbicide diquat dibromide in test systems of varying complexity. Sesin V; Dalton RL; Boutin C; Robinson SA; Bartlett AJ; Pick FR Ecotoxicol Environ Saf; 2018 Dec; 165():325-333. PubMed ID: 30212733 [TBL] [Abstract][Full Text] [Related]
9. A microcosm system to evaluate the toxicity of the triazine herbicide simazine on aquatic macrophytes. Vervliet-Scheebaum M; Straus A; Tremp H; Hamer M; Maund SJ; Wagner E; Schulz R Environ Pollut; 2010 Feb; 158(2):615-23. PubMed ID: 19800719 [TBL] [Abstract][Full Text] [Related]
10. Monensin is not toxic to aquatic macrophytes at environmentally relevant concentrations. McGregor EB; Solomon KR; Hanson ML Arch Environ Contam Toxicol; 2007 Nov; 53(4):541-51. PubMed ID: 17657449 [TBL] [Abstract][Full Text] [Related]
11. Effects of toxicants with different modes of action on Myriophyllum spicatum in test systems with varying complexity. Mohr S; Schott J; Maletzki D; Hünken A Ecotoxicol Environ Saf; 2013 Nov; 97():32-9. PubMed ID: 23928028 [TBL] [Abstract][Full Text] [Related]
12. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. van Weert S; Redondo-Hasselerharm PE; Diepens NJ; Koelmans AA Sci Total Environ; 2019 Mar; 654():1040-1047. PubMed ID: 30841378 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity, variability, and recovery of functional and structural endpoints of an aquatic community exposed to herbicides. Knauer K; Hommen U Ecotoxicol Environ Saf; 2012 Apr; 78():178-83. PubMed ID: 22153306 [TBL] [Abstract][Full Text] [Related]
14. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products. Hommen U; Schmitt W; Heine S; Brock TC; Duquesne S; Manson P; Meregalli G; Ochoa-Acuña H; van Vliet P; Arts G Integr Environ Assess Manag; 2016 Jan; 12(1):82-95. PubMed ID: 26420056 [TBL] [Abstract][Full Text] [Related]
15. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides. Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms. Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395 [TBL] [Abstract][Full Text] [Related]
17. Field level evaluation and risk assessment of the toxicity of dichloroacetic acid to the aquatic macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum. Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR Ecotoxicol Environ Saf; 2003 May; 55(1):46-63. PubMed ID: 12706393 [TBL] [Abstract][Full Text] [Related]
18. Sucrose modifies growth and physiology in axenically grown Myriophyllum spicatum with potential effects on the response to pollutants. Nuttens A; Gross EM Environ Toxicol Chem; 2017 Apr; 36(4):969-975. PubMed ID: 27597637 [TBL] [Abstract][Full Text] [Related]
19. Methods for assessing the toxicity of herbicides to submersed aquatic plants. Knauer K; Vervliet-Scheebaum M; Dark RJ; Maund SJ Pest Manag Sci; 2006 Aug; 62(8):715-22. PubMed ID: 16703656 [TBL] [Abstract][Full Text] [Related]
20. Seasonal dynamics of the macrophyte test species Myriophyllum spicatum over two years in experimental ditches for population modeling application in risk assessment. Arts GHP; van Smeden J; Wolters MF; Belgers JDM; Matser AM; Hommen U; Bruns E; Heine S; Solga A; Taylor S Integr Environ Assess Manag; 2022 Sep; 18(5):1375-1386. PubMed ID: 34755447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]