BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27696532)

  • 1. Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria.
    Shrivastava SK; Dalko E; Delcroix-Genete D; Herbert F; Cazenave PA; Pied S
    Glia; 2017 Jan; 65(1):75-92. PubMed ID: 27696532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria.
    Capuccini B; Lin J; Talavera-López C; Khan SM; Sodenkamp J; Spaccapelo R; Langhorne J
    Sci Rep; 2016 Dec; 6():39258. PubMed ID: 27991544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential modulation of glial cell mediated neuroinflammation in Plasmodium berghei ANKA infection by TGF β and IL 6.
    Sarkar S; Keswani T; Sengupta A; Mitra S; Bhattacharyya A
    Cytokine; 2017 Nov; 99():249-259. PubMed ID: 28803696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity.
    Briquet S; Lawson-Hogban N; Boisson B; Soares MP; Péronet R; Smith L; Ménard R; Huerre M; Mécheri S; Vaquero C
    Infect Immun; 2015 Jul; 83(7):2771-84. PubMed ID: 25916985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme dampens T-cell sequestration by modulating glial cell responses during rodent cerebral malaria.
    Dalko E; Genete D; Auger F; Dovergne C; Lambert C; Herbert F; Cazenave PA; Roland J; Pied S
    Brain Behav Immun; 2016 Nov; 58():280-290. PubMed ID: 27477919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes.
    Medana IM; Hunt NH; Chaudhri G
    Am J Pathol; 1997 Apr; 150(4):1473-86. PubMed ID: 9095002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD8+ T cells and IFN-γ mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria.
    Claser C; Malleret B; Gun SY; Wong AY; Chang ZW; Teo P; See PC; Howland SW; Ginhoux F; Rénia L
    PLoS One; 2011 Apr; 6(4):e18720. PubMed ID: 21494565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive changes of retinal microglia during fatal murine cerebral malaria: effects of dexamethasone and experimental permeabilization of the blood-brain barrier.
    Medana IM; Chan-Ling T; Hunt NH
    Am J Pathol; 2000 Mar; 156(3):1055-65. PubMed ID: 10702421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A noncanonical autophagy is involved in the transfer of
    Leleu I; Genete D; Desnoulez SS; Saidi N; Brodin P; Lafont F; Tomavo S; Pied S
    Autophagy; 2022 Jul; 18(7):1583-1598. PubMed ID: 34747313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RTP4 inhibits IFN-I response and enhances experimental cerebral malaria and neuropathology.
    He X; Ashbrook AW; Du Y; Wu J; Hoffmann HH; Zhang C; Xia L; Peng YC; Tumas KC; Singh BK; Qi CF; Myers TG; Long CA; Liu C; Wang R; Rice CM; Su XZ
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19465-19474. PubMed ID: 32709745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressor of cytokine signaling 2 modulates the immune response profile and development of experimental cerebral malaria.
    Brant F; Miranda AS; Esper L; Gualdrón-López M; Cisalpino D; de Souza DDG; Rachid MA; Tanowitz HB; Teixeira MM; Teixeira AL; Machado FS
    Brain Behav Immun; 2016 May; 54():73-85. PubMed ID: 26765997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomes of microglia in experimental cerebral malaria in mice in the presence and absence of Type I Interferon signaling.
    Talavera-López C; Capuccini B; Mitter R; Lin JW; Langhorne J
    BMC Res Notes; 2018 Dec; 11(1):913. PubMed ID: 30572937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria.
    Wilson KD; Ochoa LF; Solomon OD; Pal R; Cardona SM; Carpio VH; Keiser PH; Cardona AE; Vargas G; Stephens R
    J Neuroinflammation; 2018 Jun; 15(1):173. PubMed ID: 29866139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria.
    Cohen A; Zinger A; Tiberti N; Grau GER; Combes V
    Malar J; 2018 May; 17(1):192. PubMed ID: 29747626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopic features of brain edema in rodent cerebral malaria in relation to glial fibrillary acidic protein expression.
    Ampawong S; Chaisri U; Viriyavejakul P; Nontprasert A; Grau GE; Pongponratn E
    Int J Clin Exp Pathol; 2014; 7(5):2056-67. PubMed ID: 24966914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of CD300lf by microglia contributes to resistance to cerebral malaria by impeding the neuroinflammation.
    Keswani T; Roland J; Herbert F; Delcroix-Genete D; Bauderlique-Le Roy H; Gaayeb L; Cazenave PA; Pied S
    Genes Immun; 2020 Jan; 21(1):45-62. PubMed ID: 31501529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD47 blockade reduces the pathologic features of experimental cerebral malaria and promotes survival of hosts with
    Torrez Dulgeroff LB; Oakley MS; Tal MC; Yiu YY; He JQ; Shoham M; Majam V; Okoth WA; Malla P; Kumar S; Weissman IL
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria.
    Keita Alassane S; Nicolau-Travers ML; Menard S; Andreoletti O; Cambus JP; Gaudre N; Wlodarczyk M; Blanchard N; Berry A; Abbes S; Colongo D; Faye B; Augereau JM; Lacroux C; Iriart X; Benoit-Vical F
    PLoS One; 2017; 12(7):e0181300. PubMed ID: 28742109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the modulation of reactive species, lipid bodies, cyclooxygenase-2, 5-lipoxygenase and PPAR-γ in cerebral malaria-susceptible and resistant mice.
    Borges TK; Alves ÉA; Vasconcelos HA; Carneiro FP; Nicola AM; Magalhães KG; Muniz-Junqueira MI
    Immunobiology; 2017 Apr; 222(4):604-619. PubMed ID: 27887739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocyte Locomotion Inhibitory Factor confers neuroprotection and prevents the development of murine cerebral malaria.
    Galán-Salinas A; Corral-Ruíz G; Pérez-Vega MJ; Fabila-Castillo L; Silva-García R; Marquina-Castillo B; León-Contreras JC; Barrios-Payán J; Francisco-Cruz A; Montecillo-Aguado M; Huerta-Yepez S; Calderón-Amador J; Flores-Romo L; Hernández-Pando R; Sánchez-Torres LE
    Int Immunopharmacol; 2021 Aug; 97():107674. PubMed ID: 34044183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.