BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27696651)

  • 1. An evolutionary balance: conservation vs innovation in ciliate membrane trafficking.
    Guerrier S; Plattner H; Richardson E; Dacks JB; Turkewitz AP
    Traffic; 2017 Jan; 18(1):18-28. PubMed ID: 27696651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in
    Kaur H; Sparvoli D; Osakada H; Iwamoto M; Haraguchi T; Turkewitz AP
    Mol Biol Cell; 2017 Jun; 28(11):1551-1564. PubMed ID: 28381425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena.
    Briguglio JS; Kumar S; Turkewitz AP
    J Cell Biol; 2013 Nov; 203(3):537-50. PubMed ID: 24189272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretion of Polypeptide Crystals from Tetrahymena thermophila Secretory Organelles (Mucocysts) Depends on Processing by a Cysteine Cathepsin, Cth4p.
    Kumar S; Briguglio JS; Turkewitz AP
    Eukaryot Cell; 2015 Aug; 14(8):817-33. PubMed ID: 26092918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of membrane trafficking system components across ciliate diversity highlights heterogenous organelle-associated machinery.
    Richardson E; Dacks JB
    Traffic; 2022 Apr; 23(4):208-220. PubMed ID: 35128766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marked amplification and diversification of products of ras genes from rat brain, Rab GTPases, in the ciliates Tetrahymena thermophila and Paramecium tetraurelia.
    Saito-Nakano Y; Nakahara T; Nakano K; Nozaki T; Numata O
    J Eukaryot Microbiol; 2010; 57(5):389-99. PubMed ID: 20738463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis.
    Turkewitz AP
    Traffic; 2004 Feb; 5(2):63-8. PubMed ID: 14690495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New class of cargo protein in Tetrahymena thermophila dense core secretory granules.
    Haddad A; Bowman GR; Turkewitz AP
    Eukaryot Cell; 2002 Aug; 1(4):583-93. PubMed ID: 12456006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila.
    Sparvoli D; Richardson E; Osakada H; Lan X; Iwamoto M; Bowman GR; Kontur C; Bourland WA; Lynn DH; Pritchard JK; Haraguchi T; Dacks JB; Turkewitz AP
    Curr Biol; 2018 Mar; 28(5):697-710.e13. PubMed ID: 29478853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular identification of a SNAP-25-like SNARE protein in Paramecium.
    Schilde C; Lutter K; Kissmehl R; Plattner H
    Eukaryot Cell; 2008 Aug; 7(8):1387-402. PubMed ID: 18552286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of the phosphoinositide kinome from two ciliates reveals novel evolutionary links for phosphoinositide kinases in eukaryotic cells.
    Leondaritis G; Siokos J; Skaripa I; Galanopoulou D
    PLoS One; 2013; 8(11):e78848. PubMed ID: 24244373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila.
    Kuppannan A; Jiang YY; Maier W; Liu C; Lang CF; Cheng CY; Field MC; Zhao M; Zoltner M; Turkewitz AP
    PLoS Genet; 2022 May; 18(5):e1010194. PubMed ID: 35587496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parafusin is a membrane and vesicle associated protein that cycles at exocytosis.
    Zhao H; Satir BH
    Eur J Cell Biol; 1998 Jan; 75(1):46-53. PubMed ID: 9523154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-study analysis of genomic data defines the ciliate multigenic epiplasmin family: strategies for functional analysis in Paramecium tetraurelia.
    Damaj R; Pomel S; Bricheux G; Coffe G; Viguès B; Ravet V; Bouchard P
    BMC Evol Biol; 2009 Jun; 9():125. PubMed ID: 19493334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane trafficking in protozoa SNARE proteins, H+-ATPase, actin, and other key players in ciliates.
    Plattner H
    Int Rev Cell Mol Biol; 2010; 280():79-184. PubMed ID: 20797682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Rab-based view of membrane traffic in the ciliate Tetrahymena thermophila.
    Turkewitz AP; Bright LJ
    Small GTPases; 2011 Jul; 2(4):222-226. PubMed ID: 22145095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxoplasma PRP1 is an ortholog of parafusin (PFUS) in vesicle scaffold assembly in Ca(2+)-regulated exocytosis.
    Liu L; Tucker SC; Satir BH
    Eur J Cell Biol; 2009 May; 88(5):301-13. PubMed ID: 19167775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct subcellular localization of a group of synaptobrevin-like SNAREs in Paramecium tetraurelia and effects of silencing SNARE-specific chaperone NSF.
    Schilde C; Schönemann B; Sehring IM; Plattner H
    Eukaryot Cell; 2010 Feb; 9(2):288-305. PubMed ID: 20023070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels.
    Plattner H
    Cell Calcium; 2015 Mar; 57(3):203-13. PubMed ID: 25277862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent transport and sorting of functionally distinct protein families in Tetrahymena thermophila dense core secretory granules.
    Rahaman A; Miao W; Turkewitz AP
    Eukaryot Cell; 2009 Oct; 8(10):1575-83. PubMed ID: 19684282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.