These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27696874)

  • 1. Doped Organic Transistors.
    Lüssem B; Keum CM; Kasemann D; Naab B; Bao Z; Leo K
    Chem Rev; 2016 Nov; 116(22):13714-13751. PubMed ID: 27696874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping: A Key Enabler for Organic Transistors.
    Xu Y; Sun H; Liu A; Zhu HH; Li W; Lin YF; Noh YY
    Adv Mater; 2018 Nov; 30(46):e1801830. PubMed ID: 30101530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minority Currents in n-Doped Organic Transistors.
    Al-Shadeedi A; Liu S; Keum CM; Kasemann D; Hoßbach C; Bartha J; Bunge SD; Lüssem B
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32432-32439. PubMed ID: 27797170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doped organic transistors operating in the inversion and depletion regime.
    Lüssem B; Tietze ML; Kleemann H; Hoßbach C; Bartha JW; Zakhidov A; Leo K
    Nat Commun; 2013; 4():2775. PubMed ID: 24225722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation Doping for Threshold Voltage Control in Organic Field-Effect Transistors.
    Lashkov I; Krechan K; Ortstein K; Talnack F; Wang SJ; Mannsfeld SCB; Kleemann H; Leo K
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8664-8671. PubMed ID: 33569958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.
    Lu Y; Wang JY; Pei J
    Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Molecular Doping in Organic Semiconductors.
    Jacobs IE; Moulé AJ
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28921668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic Device Model of Organic Field-Effect Transistors with Doped Channels.
    Liu S; Radha Krishnan RK; Dahal D; Lüssem B
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49857-49865. PubMed ID: 33103885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high gain diffusion-driven organic transistor.
    Torricelli F; Colalongo L; Raiteri D; Kovács-Vajna ZM; Cantatore E
    Nat Commun; 2016 Feb; 7():10550. PubMed ID: 26829567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
    Tang CG; Ang MC; Choo KK; Keerthi V; Tan JK; Syafiqah MN; Kugler T; Burroughes JH; Png RQ; Chua LL; Ho PK
    Nature; 2016 Nov; 539(7630):536-540. PubMed ID: 27882976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-Effect Charge Transport in Doped Polymer Semiconductor-Insulator Alternating Bulk Junctions with Ultrathin Transport Layers.
    Hu Y; Bu L; Wang X; Zhou L; Lu G
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39091-39099. PubMed ID: 30350936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.
    Noda K; Wada Y; Toyabe T
    Phys Chem Chem Phys; 2015 Oct; 17(40):26535-40. PubMed ID: 24922359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulk versus Contact Doping in Organic Semiconductors.
    Kim CH
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34202611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant.
    Wang R; Guo Y; Zhang D; Zhou H; Zhao D; Zhang Y
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700726. PubMed ID: 29333667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.
    Zhang F; Dai X; Zhu W; Chung H; Diao Y
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28488773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu-Thienoquinone Charge-Transfer Complex: Synthesis, Characterization, and Application in Organic Transistors.
    Wang D; Qiao X; Tao J; Zou Y; Wu H; Zhu D; Li H
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26451-26455. PubMed ID: 30019888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of Doping and Thermal Treatment on Organic Semiconducting Nanowires.
    Min SY; Kim YH; Wolf C; Lee TW
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):18909-14. PubMed ID: 26284606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.
    Labram JG; Lin YH; Anthopoulos TD
    Small; 2015 Nov; 11(41):5472-82. PubMed ID: 26349850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.