These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2769738)

  • 1. Role of substrate binding forces in exchange-only transport systems: I. Transition-state theory.
    Krupka RM
    J Membr Biol; 1989 Jul; 109(2):151-8. PubMed ID: 2769738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of substrate binding forces in exchange-only transport systems: II. Implications for the mechanism of the anion exchanger of red cells.
    Krupka RM
    J Membr Biol; 1989 Jul; 109(2):159-71. PubMed ID: 2671377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of transport systems dependent on periplasmic binding proteins.
    Krupka RM
    Biochim Biophys Acta; 1992 Sep; 1110(1):1-10. PubMed ID: 1390828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channelling free energy into work in biological processes.
    Krupka RM
    Exp Physiol; 1998 Mar; 83(2):243-51. PubMed ID: 9568485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of substrate specificity in facilitated transport systems.
    Krupka RM
    J Membr Biol; 1990 Jul; 117(1):69-78. PubMed ID: 2205724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1979 Nov; 557(2):469-85. PubMed ID: 497194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria.
    Huang SG; Klingenberg M
    Biochemistry; 1996 Jun; 35(24):7846-54. PubMed ID: 8672485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limits on the tightness of coupling in active transport.
    Krupka RM
    J Membr Biol; 1999 Jan; 167(1):35-41. PubMed ID: 9878073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling mechanisms in active transport.
    Krupka RM
    Biochim Biophys Acta; 1993 Nov; 1183(1):105-13. PubMed ID: 8399371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between substrate dissociation constants derived from transport experiments and from equilibrium binding assays. Implications of the conventional carrier model.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1984 Jan; 769(2):455-60. PubMed ID: 6696893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpreting the effects of specific protein modification on antiport coupling mechanisms: the case of the aspartate/glutamate exchanger.
    Krupka RM
    Biochim Biophys Acta; 1995 May; 1236(1):1-9. PubMed ID: 7794936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling mechanisms in ATP-driven pumps.
    Krupka RM
    Biochim Biophys Acta; 1993 Nov; 1183(1):114-22. PubMed ID: 8399372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components.
    Bohl E; Shuman HA; Boos W
    J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing models for transport systems dependent on periplasmic binding proteins.
    Krupka RM
    Biochim Biophys Acta; 1992 Sep; 1110(1):11-9. PubMed ID: 1390830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-protein interaction in biomembrane carriers. The induced transition fit of transport catalysis.
    Klingenberg M
    Biochemistry; 2005 Jun; 44(24):8563-70. PubMed ID: 15952762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria.
    Dierks T; Riemer E; Krämer R
    Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.
    Jauch P; Läuger P
    J Membr Biol; 1986; 94(2):117-27. PubMed ID: 3560198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes and possible structure of the oxoglutarate translocator of rat-heart mitochondria revealed by the kinetic study of malate and oxoglutarate uptake.
    Sluse-Goffart CM; Sluse FE; Duyckaerts C; Richard M; Hengesch P; Liébecq C
    Eur J Biochem; 1983 Aug; 134(3):397-406. PubMed ID: 6884340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GAT1 (GABA:Na+:Cl-) cotransport function. Database reconstruction with an alternating access model.
    Hilgemann DW; Lu CC
    J Gen Physiol; 1999 Sep; 114(3):459-75. PubMed ID: 10469735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting the effects of site-directed mutagenesis on active transport systems.
    Krupka RM
    Biochim Biophys Acta; 1994 Jul; 1193(1):165-78. PubMed ID: 8038187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.