BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27697709)

  • 1. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam.
    Lee CG; Lee S; Park JA; Park C; Lee SJ; Kim SB; An B; Yun ST; Lee SH; Choi JW
    Chemosphere; 2017 Jan; 166():203-211. PubMed ID: 27697709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.
    Lee CG; Song MK; Ryu JC; Park C; Choi JW; Lee SH
    Chemosphere; 2016 Jun; 153():1-9. PubMed ID: 26999028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments.
    Lee SC; Kang JK; Sim EH; Choi NC; Kim SB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Nov; 52(13):1195-1203. PubMed ID: 28920769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater.
    Ren T; He P; Niu W; Wu Y; Ai L; Gou X
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):155-62. PubMed ID: 22392693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample.
    Akar S; Lorestani B; Sobhanardakani S; Cheraghi M; Moradi O
    Environ Monit Assess; 2019 May; 191(6):373. PubMed ID: 31102030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficiency of removing heavy metal ions from industrial electropolishing wastewater using natural materials.
    Charazińska S; Burszta-Adamiak E; Lochyński P
    Sci Rep; 2022 Oct; 12(1):17766. PubMed ID: 36273077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium removal from aqueous medium by ternary nanoadsorbent: A study of kinetics, equilibrium, and thermodynamic mechanism.
    Uddin MN; Saha GC; Hasanath MA; Badsha MAH; Chowdhury MH; Islam ARMT
    PLoS One; 2023; 18(12):e0290234. PubMed ID: 38134202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin.
    Lee CG; Jeon JW; Hwang MJ; Ahn KH; Park C; Choi JW; Lee SH
    Chemosphere; 2015 Jul; 130():59-65. PubMed ID: 25819762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DPF soot as an adsorbent for Cu(II), Cd(II), and Cr(VI) compared with commercial activated carbon.
    Yang K; Fox J
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8620-8635. PubMed ID: 29318487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective removal of aluminum, nickel and chromium ions by polymeric resins and natural zeolite from anodic plating wastewater.
    Ates N; Basak A
    Int J Environ Health Res; 2021 Jan; 31(1):102-119. PubMed ID: 31218885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SEM and XRD for removal of heavy metals from industrial wastewater and characterization of chicken eggshell.
    Amin S; Abbas M; Tahir A; Ghani N; Abrar A; Aslam F; Ahmad S
    Microsc Res Tech; 2022 Jul; 85(7):2587-2595. PubMed ID: 35388578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of Cu(II), Ni(II), and Cr(III) ions from simulated wastewater by dendrimer/titania composites.
    Barakat MA; Ramadan MH; Alghamdi MA; Algarny SS; Woodcock HL; Kuhn JN
    J Environ Manage; 2013 Mar; 117():50-7. PubMed ID: 23353877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption characteristics of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions by Chara sp. and Cladophora sp.
    Elmaci A; Yonar T; Ozengin N
    Water Environ Res; 2007 Sep; 79(9):1000-5. PubMed ID: 17910369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review.
    Jiang Y; Liu Z; Zeng G; Liu Y; Shao B; Li Z; Liu Y; Zhang W; He Q
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6158-6174. PubMed ID: 29307070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by
    Zeng G; He Y; Liang D; Wang F; Luo Y; Yang H; Wang Q; Wang J; Gao P; Wen X; Yu C; Sun D
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater.
    Ugwu EI; Agunwamba JC
    Environ Monit Assess; 2020 Mar; 192(4):240. PubMed ID: 32185514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent.
    Maity S; Bajirao Patil P; SenSharma S; Sarkar A
    Chemosphere; 2022 Nov; 307(Pt 4):136115. PubMed ID: 35995185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column.
    Vijayaraghavan K; Jegan J; Palanivelu K; Velan M
    Chemosphere; 2005 Jul; 60(3):419-26. PubMed ID: 15924962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste tea residue adsorption coupled with electrocoagulation for improvement of copper and nickel ions removal from simulated wastewater.
    Jean Claude N; Shanshan L; Khan J; Yifeng W; Dongxu H; Xiangru L
    Sci Rep; 2022 Mar; 12(1):3519. PubMed ID: 35241732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of magnetic bio-adsorbent developed from Aegle marmelos leaves for removal of As(V) from aqueous solutions.
    Sahu UK; Sahu S; Mahapatra SS; Patel RK
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):946-958. PubMed ID: 30421369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.