BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27697903)

  • 1. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic induction of caspase-8 mediated apoptosis by employing Arabidopsis cryptochrome 2.
    Mo W; Su S; Shang R; Yang L; Zhao X; Wu C; Yang Z; Zhang H; Wu L; Liu Y; He Y; Zhang R; Zuo Z
    Sci Rep; 2023 Dec; 13(1):23067. PubMed ID: 38155283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic control of integrin-matrix interaction.
    Baaske J; Mühlhäuser WWD; Yousefi OS; Zanner S; Radziwill G; Hörner M; Schamel WWA; Weber W
    Commun Biol; 2019; 2():15. PubMed ID: 30652127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos.
    Spencer Adams D; Lemire JM; Kramer RH; Levin M
    Int J Dev Biol; 2014; 58(10-12):851-61. PubMed ID: 25896279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
    Kramer MM; Lataster L; Weber W; Radziwill G
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Signaling Activation in Zebrafish Embryos.
    Saul AJ; Rogers CE; Garmendia-Cedillos M; Pohida T; Rogers KW
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37955383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.
    Buckley CE
    Methods Mol Biol; 2019; 1920():143-162. PubMed ID: 30737691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-activated protein interaction with high spatial subcellular confinement.
    Benedetti L; Barentine AES; Messa M; Wheeler H; Bewersdorf J; De Camilli P
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2238-E2245. PubMed ID: 29463750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity.
    Shaaya M; Fauser J; Zhurikhina A; Conage-Pough JE; Huyot V; Brennan M; Flower CT; Matsche J; Khan S; Natarajan V; Rehman J; Kota P; White FM; Tsygankov D; Karginov AV
    Elife; 2020 Sep; 9():. PubMed ID: 32965214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shaping an evanescent focus of light for high spatial resolution optogenetic activations in live cells.
    Grosjean M; Grichine A; Pezet M; Destaing O; Delon A; Wang I
    Opt Express; 2024 May; 32(11):19480-19494. PubMed ID: 38859082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise modulation of embryonic development through optogenetics.
    Fan H; Barnes C; Hwang H; Zhang K; Yang J
    Genesis; 2022 Dec; 60(10-12):e23505. PubMed ID: 36478118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior.
    Repina NA; Rosenbloom A; Mukherjee A; Schaffer DV; Kane RS
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():13-39. PubMed ID: 28592174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust.
    Huang Dennis Z; Benman W; Dong L; Bugaj LJ
    J Mol Biol; 2024 Feb; 436(3):168452. PubMed ID: 38246410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.
    Oh TJ; Fan H; Skeeters SS; Zhang K
    Adv Biol (Weinh); 2021 May; 5(5):e2000180. PubMed ID: 34028216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OptoREACT: Optogenetic Receptor Activation on Nonengineered Human T Cells.
    Armbruster A; Ehret AK; Russ M; Idstein V; Klenzendorf M; Gaspar D; Juraske C; Yousefi OS; Schamel WW; Weber W; Hörner M
    ACS Synth Biol; 2024 Mar; 13(3):752-762. PubMed ID: 38335541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins.
    Gada KD; Kawano T; Plant LD; Logothetis DE
    J Biol Chem; 2022 May; 298(5):101893. PubMed ID: 35367414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative insights in tissue growth and morphogenesis with optogenetics.
    Mim MS; Knight C; Zartman JJ
    Phys Biol; 2023 Sep; 20(6):. PubMed ID: 37678266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illuminating developmental biology with cellular optogenetics.
    Johnson HE; Toettcher JE
    Curr Opin Biotechnol; 2018 Aug; 52():42-48. PubMed ID: 29505976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at Organelle Contact Sites.
    Benedetti L
    Curr Protoc; 2021 Mar; 1(3):e71. PubMed ID: 33657274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.
    Farahani PE; Reed EH; Underhill EJ; Aoki K; Toettcher JE
    Annu Rev Biomed Eng; 2021 Jul; 23():61-87. PubMed ID: 33722063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.