BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 27697903)

  • 21. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
    Liu B; Yang Z; Gomez A; Liu B; Lin C; Oka Y
    J Plant Res; 2016 Mar; 129(2):137-48. PubMed ID: 26810763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CL6mN: Rationally Designed Optogenetic Photoswitches with Tunable Dissociation Dynamics.
    Mukherjee A; Sudrik C; Hu Y; Arha M; Stathos M; Baek J; Schaffer DV; Kane RS
    ACS Synth Biol; 2020 Sep; 9(9):2274-2281. PubMed ID: 32794731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetic control of phosphoinositide metabolism.
    Idevall-Hagren O; Dickson EJ; Hille B; Toomre DK; De Camilli P
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):E2316-23. PubMed ID: 22847441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.
    Quejada JR; Park SE; Awari DW; Shi F; Yamamoto HE; Kawano F; Jung JC; Yazawa M
    Nucleic Acids Res; 2017 Nov; 45(20):e172. PubMed ID: 29040770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoactivation and inactivation of Arabidopsis cryptochrome 2.
    Wang Q; Zuo Z; Wang X; Gu L; Yoshizumi T; Yang Z; Yang L; Liu Q; Liu W; Han YJ; Kim JI; Liu B; Wohlschlegel JA; Matsui M; Oka Y; Lin C
    Science; 2016 Oct; 354(6310):343-347. PubMed ID: 27846570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetic perturbation of the biochemical pathways that control cell behavior.
    Haar LL; Lawrence DS; Hughes RM
    Methods Enzymol; 2019; 622():309-328. PubMed ID: 31155059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarking of optical dimerizer systems.
    Pathak GP; Strickland D; Vrana JD; Tucker CL
    ACS Synth Biol; 2014 Nov; 3(11):832-8. PubMed ID: 25350266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetic Control of Gene Expression in Drosophila.
    Chan YB; Alekseyenko OV; Kravitz EA
    PLoS One; 2015; 10(9):e0138181. PubMed ID: 26383635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.
    Mühlhäuser WWD; Weber W; Radziwill G
    ACS Synth Biol; 2019 Jul; 8(7):1679-1684. PubMed ID: 31185174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early But Not Delayed Optogenetic RAF Activation Promotes Astrocytogenesis in Mouse Neural Progenitors.
    Su Y; Huang X; Huang Z; Huang T; Li T; Fan H; Zhang K; Yi C
    J Mol Biol; 2020 Jul; 432(16):4358-4368. PubMed ID: 32598937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Development and application of optogenetic tools].
    Wei Q; Xu C; Wang M; Ye H
    Sheng Wu Gong Cheng Xue Bao; 2019 Dec; 35(12):2238-2256. PubMed ID: 31880133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repurposing Protein Degradation for Optogenetic Modulation of Protein Activities.
    Mondal P; Krishnamurthy VV; Sharum SR; Haack N; Zhou H; Cheng J; Yang J; Zhang K
    ACS Synth Biol; 2019 Nov; 8(11):2585-2592. PubMed ID: 31600062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
    Liu H; Yu X; Li K; Klejnot J; Yang H; Lisiero D; Lin C
    Science; 2008 Dec; 322(5907):1535-9. PubMed ID: 18988809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optogenetic system for interrogating the temporal dynamics of Akt.
    Katsura Y; Kubota H; Kunida K; Kanno A; Kuroda S; Ozawa T
    Sci Rep; 2015 Oct; 5():14589. PubMed ID: 26423353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.
    Bugaj LJ; Spelke DP; Mesuda CK; Varedi M; Kane RS; Schaffer DV
    Nat Commun; 2015 Apr; 6():6898. PubMed ID: 25902152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2.
    Liu Q; Wang Q; Deng W; Wang X; Piao M; Cai D; Li Y; Barshop WD; Yu X; Zhou T; Liu B; Oka Y; Wohlschlegel J; Zuo Z; Lin C
    Nat Commun; 2017 May; 8():15234. PubMed ID: 28492234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.