BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 27697903)

  • 41. Illuminating cell signalling with optogenetic tools.
    Tischer D; Weiner OD
    Nat Rev Mol Cell Biol; 2014 Aug; 15(8):551-8. PubMed ID: 25027655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Blue Light Switchable Cell-Cell Interactions Provide Reversible and Spatiotemporal Control Towards Bottom-Up Tissue Engineering.
    Yüz SG; Rasoulinejad S; Mueller M; Wegner AE; Wegner SV
    Adv Biosyst; 2019 Apr; 3(4):e1800310. PubMed ID: 32627428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optogenetic control of integrin-matrix interaction.
    Baaske J; Mühlhäuser WWD; Yousefi OS; Zanner S; Radziwill G; Hörner M; Schamel WWA; Weber W
    Commun Biol; 2019; 2():15. PubMed ID: 30652127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optogenetic inhibition of apical constriction during Drosophila embryonic development.
    Guglielmi G; De Renzis S
    Methods Cell Biol; 2017; 139():167-186. PubMed ID: 28215335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
    Buckley CE; Moore RE; Reade A; Goldberg AR; Weiner OD; Clarke JDW
    Dev Cell; 2016 Jan; 36(1):117-126. PubMed ID: 26766447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein Inactivation by Optogenetic Trapping in Living Cells.
    Park H; Lee S; Heo WD
    Methods Mol Biol; 2016; 1408():363-76. PubMed ID: 26965136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An optimized optogenetic clustering tool for probing protein interaction and function.
    Taslimi A; Vrana JD; Chen D; Borinskaya S; Mayer BJ; Kennedy MJ; Tucker CL
    Nat Commun; 2014 Sep; 5():4925. PubMed ID: 25233328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Principles and applications of optogenetics in developmental biology.
    Krueger D; Izquierdo E; Viswanathan R; Hartmann J; Pallares Cartes C; De Renzis S
    Development; 2019 Oct; 146(20):. PubMed ID: 31641044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical control of mammalian endogenous transcription and epigenetic states.
    Konermann S; Brigham MD; Trevino A; Hsu PD; Heidenreich M; Cong L; Platt RJ; Scott DA; Church GM; Zhang F
    Nature; 2013 Aug; 500(7463):472-476. PubMed ID: 23877069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lighting Up ERK Activity.
    Shilo BZ; Barkai N
    Dev Cell; 2017 Jan; 40(2):115-116. PubMed ID: 28118596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optogenetic Control of Synaptic Composition and Function.
    Sinnen BL; Bowen AB; Forte JS; Hiester BG; Crosby KC; Gibson ES; Dell'Acqua ML; Kennedy MJ
    Neuron; 2017 Feb; 93(3):646-660.e5. PubMed ID: 28132827
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatiotemporal control of fibroblast growth factor receptor signals by blue light.
    Kim N; Kim JM; Lee M; Kim CY; Chang KY; Heo WD
    Chem Biol; 2014 Jul; 21(7):903-12. PubMed ID: 24981772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optogenetic Rescue of a Patterning Mutant.
    Johnson HE; Djabrayan NJV; Shvartsman SY; Toettcher JE
    Curr Biol; 2020 Sep; 30(17):3414-3424.e3. PubMed ID: 32707057
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optogenetic Control of Fibroblast Growth Factor Receptor Signaling.
    Kim N; Kim JM; Heo WD
    Methods Mol Biol; 2016; 1408():345-62. PubMed ID: 26965135
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optogenetically controlled protein kinases for regulation of cellular signaling.
    Leopold AV; Chernov KG; Verkhusha VV
    Chem Soc Rev; 2018 Apr; 47(7):2454-2484. PubMed ID: 29498733
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
    Melendez J; Patel M; Oakes BL; Xu P; Morton P; McClean MN
    Integr Biol (Camb); 2014 Mar; 6(3):366-72. PubMed ID: 24477515
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis.
    Wang W; Lu X; Li L; Lian H; Mao Z; Xu P; Guo T; Xu F; Du S; Cao X; Wang S; Shen H; Yang HQ
    Plant Cell; 2018 Sep; 30(9):1989-2005. PubMed ID: 30131420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Generalizable Optogenetic Strategy to Regulate Receptor Tyrosine Kinases during Vertebrate Embryonic Development.
    Krishnamurthy VV; Fu J; Oh TJ; Khamo J; Yang J; Zhang K
    J Mol Biol; 2020 May; 432(10):3149-3158. PubMed ID: 32277988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multichromatic Control of Signaling Pathways in Mammalian Cells.
    Kramer MM; Mühlhäuser WWD; Weber W; Radziwill G
    Adv Biol (Weinh); 2021 May; 5(5):e2000196. PubMed ID: 33045139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active ERK2 is sufficient to mediate growth arrest and differentiation signaling.
    Wu PK; Hong SK; Yoon SH; Park JI
    FEBS J; 2015 Mar; 282(6):1017-30. PubMed ID: 25639353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.