BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27698019)

  • 1. RalF-Mediated Activation of Arf6 Controls Rickettsia typhi Invasion by Co-Opting Phosphoinositol Metabolism.
    Rennoll-Bankert KE; Rahman MS; Guillotte ML; Lehman SS; Beier-Sexton M; Gillespie JJ; Azad AF
    Infect Immun; 2016 Dec; 84(12):3496-3506. PubMed ID: 27698019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion.
    Rennoll-Bankert KE; Rahman MS; Gillespie JJ; Guillotte ML; Kaur SJ; Lehman SS; Beier-Sexton M; Azad AF
    PLoS Pathog; 2015 Aug; 11(8):e1005115. PubMed ID: 26291822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk1, a Phosphatidylinositol 3-Kinase Effector, Promotes Rickettsia typhi Intracellular Survival.
    Voss OH; Gillespie JJ; Lehman SS; Rennoll SA; Beier-Sexton M; Rahman MS; Azad AF
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shigella flexneri regulation of ARF6 activation during bacterial entry via an IpgD-mediated positive feedback loop.
    Garza-Mayers AC; Miller KA; Russo BC; Nagda DV; Goldberg MB
    mBio; 2015 Mar; 6(2):e02584. PubMed ID: 25736891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arf6 and phosphoinositol-4-phosphate-5-kinase activities permit bypass of the Rac1 requirement for beta1 integrin-mediated bacterial uptake.
    Wong KW; Isberg RR
    J Exp Med; 2003 Aug; 198(4):603-14. PubMed ID: 12925676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rickettsia typhi possesses phospholipase A2 enzymes that are involved in infection of host cells.
    Rahman MS; Gillespie JJ; Kaur SJ; Sears KT; Ceraul SM; Beier-Sexton M; Azad AF
    PLoS Pathog; 2013; 9(6):e1003399. PubMed ID: 23818842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site.
    Amor JC; Swails J; Zhu X; Roy CR; Nagai H; Ingmundson A; Cheng X; Kahn RA
    J Biol Chem; 2005 Jan; 280(2):1392-400. PubMed ID: 15520000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of PIP5K activity by Arf6 and its physiological significance.
    Funakoshi Y; Hasegawa H; Kanaho Y
    J Cell Physiol; 2011 Apr; 226(4):888-95. PubMed ID: 20945365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells.
    Martinez JJ; Cossart P
    J Cell Sci; 2004 Oct; 117(Pt 21):5097-106. PubMed ID: 15383620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arfs, phosphoinositides and membrane traffic.
    Donaldson JG
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1276-8. PubMed ID: 16246097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi.
    Walker DH; Yu XJ
    Ann N Y Acad Sci; 2005 Dec; 1063():13-25. PubMed ID: 16481486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi.
    Sears KT; Ceraul SM; Gillespie JJ; Allen ED; Popov VL; Ammerman NC; Rahman MS; Azad AF
    PLoS Pathog; 2012; 8(8):e1002856. PubMed ID: 22912578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylinositol-4-phosphate 5-kinase and GEP100/Brag2 protein mediate antiangiogenic signaling by semaphorin 3E-plexin-D1 through Arf6 protein.
    Sakurai A; Jian X; Lee CJ; Manavski Y; Chavakis E; Donaldson J; Randazzo PA; Gutkind JS
    J Biol Chem; 2011 Sep; 286(39):34335-45. PubMed ID: 21795701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Sec-translocon-dependent extracytoplasmic proteins of Rickettsia typhi.
    Ammerman NC; Rahman MS; Azad AF
    J Bacteriol; 2008 Sep; 190(18):6234-42. PubMed ID: 18641131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARF6 GTPase controls bacterial invasion by actin remodelling.
    Balañá ME; Niedergang F; Subtil A; Alcover A; Chavrier P; Dautry-Varsat A
    J Cell Sci; 2005 May; 118(Pt 10):2201-10. PubMed ID: 15897187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The capping domain in RalF regulates effector functions.
    Alix E; Chesnel L; Bowzard BJ; Tucker AM; Delprato A; Cherfils J; Wood DO; Kahn RA; Roy CR
    PLoS Pathog; 2012; 8(11):e1003012. PubMed ID: 23166491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi.
    Rydkina E; Sahni A; Silverman DJ; Sahni SK
    J Med Microbiol; 2007 Jul; 56(Pt 7):896-906. PubMed ID: 17577053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ARNO and ARF6 regulate axonal elongation and branching through downstream activation of phosphatidylinositol 4-phosphate 5-kinase alpha.
    Hernández-Deviez DJ; Roth MG; Casanova JE; Wilson JM
    Mol Biol Cell; 2004 Jan; 15(1):111-20. PubMed ID: 14565977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation.
    Honda A; Nogami M; Yokozeki T; Yamazaki M; Nakamura H; Watanabe H; Kawamoto K; Nakayama K; Morris AJ; Frohman MA; Kanaho Y
    Cell; 1999 Nov; 99(5):521-32. PubMed ID: 10589680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperation of phosphoinositides and BAR domain proteins in endosomal tubulation.
    Shinozaki-Narikawa N; Kodama T; Shibasaki Y
    Traffic; 2006 Nov; 7(11):1539-50. PubMed ID: 17010122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.