These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 27698039)
1. Invariance principle and model reduction for the Fokker-Planck equation. Karlin IV Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698039 [TBL] [Abstract][Full Text] [Related]
2. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Kaniadakis G; Hristopulos DT Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516 [TBL] [Abstract][Full Text] [Related]
4. From continuum Fokker-Planck models to discrete kinetic models. Xing J; Wang H; Oster G Biophys J; 2005 Sep; 89(3):1551-63. PubMed ID: 15994886 [TBL] [Abstract][Full Text] [Related]
5. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
6. Multiplicative Lévy processes: Itô versus Stratonovich interpretation. Srokowski T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051113. PubMed ID: 20364953 [TBL] [Abstract][Full Text] [Related]
7. A constrained approach to multiscale stochastic simulation of chemically reacting systems. Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748 [TBL] [Abstract][Full Text] [Related]
8. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
9. On the accuracy of generalized Fokker-Planck transport equations in tissue optics. Phillips KG; Lancellotti C Appl Opt; 2009 Jan; 48(2):229-41. PubMed ID: 19137033 [TBL] [Abstract][Full Text] [Related]
10. Aging correlation functions of the interrupted fractional Fokker-Planck propagator. Witkoskie JB; Cao J J Chem Phys; 2006 Dec; 125(24):244511. PubMed ID: 17199359 [TBL] [Abstract][Full Text] [Related]
11. State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions. Er GK; Iu VP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):067701. PubMed ID: 23005249 [TBL] [Abstract][Full Text] [Related]
12. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
13. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport. Börgers C; Larsen EW Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371 [TBL] [Abstract][Full Text] [Related]
14. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems. Frank TD; Beek PJ; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011 [TBL] [Abstract][Full Text] [Related]
15. Stochastic dynamics and denaturation of thermalized DNA. Deng ML; Zhu WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021918. PubMed ID: 18352062 [TBL] [Abstract][Full Text] [Related]
16. Escape rate from a metastable state weakly interacting with a heat bath driven by external noise. Chaudhuri JR; Barik D; Banik SK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051101. PubMed ID: 16802912 [TBL] [Abstract][Full Text] [Related]
17. Lévy targeting and the principle of detailed balance. Garbaczewski P; Stephanovich V Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011142. PubMed ID: 21867148 [TBL] [Abstract][Full Text] [Related]
18. Transport in time-dependent random potentials. Krivolapov Y; Fishman S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051115. PubMed ID: 23214746 [TBL] [Abstract][Full Text] [Related]