These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27698375)

  • 1. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes.
    Etayash H; Khan MF; Kaur K; Thundat T
    Nat Commun; 2016 Oct; 7():12947. PubMed ID: 27698375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing.
    Kara V; Duan C; Gupta K; Kurosawa S; Stearns-Kurosawa DJ; Ekinci KL
    Lab Chip; 2018 Feb; 18(5):743-753. PubMed ID: 29387860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical identification of liquid reagents in a microfluidic channel.
    Faheem Khan M; Kim S; Lee D; Schmid S; Boisen A; Thundat T
    Lab Chip; 2014 Apr; 14(7):1302-7. PubMed ID: 24496241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics.
    Takagi R; Fukuda J; Nagata K; Yawata Y; Nomura N; Suzuki H
    Analyst; 2013 Feb; 138(4):1000-3. PubMed ID: 23289096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.
    Cira NJ; Ho JY; Dueck ME; Weibel DB
    Lab Chip; 2012 Mar; 12(6):1052-9. PubMed ID: 22193301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor.
    Liu X; Marrakchi M; Jahne M; Rogers S; Andreescu S
    Free Radic Biol Med; 2016 Feb; 91():25-33. PubMed ID: 26655038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing.
    Mohan R; Mukherjee A; Sevgen SE; Sanpitakseree C; Lee J; Schroeder CM; Kenis PJ
    Biosens Bioelectron; 2013 Nov; 49():118-25. PubMed ID: 23728197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
    Choi J; Jung YG; Kim J; Kim S; Jung Y; Na H; Kwon S
    Lab Chip; 2013 Jan; 13(2):280-7. PubMed ID: 23172338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing.
    He J; Mu X; Guo Z; Hao H; Zhang C; Zhao Z; Wang Q
    Eur J Clin Microbiol Infect Dis; 2014 Dec; 33(12):2223-30. PubMed ID: 24996540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli.
    Gfeller KY; Nugaeva N; Hegner M
    Appl Environ Microbiol; 2005 May; 71(5):2626-31. PubMed ID: 15870354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
    Tang Y; Zhen L; Liu J; Wu J
    Anal Chem; 2013 Mar; 85(5):2787-94. PubMed ID: 23360389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Infrared Spectroscopy and Multivariate Analysis to Detect Antibiotics' Resistant Escherichia coli Bacteria.
    Sharaha U; Rodriguez-Diaz E; Riesenberg K; Bigio IJ; Huleihel M; Salman A
    Anal Chem; 2017 Sep; 89(17):8782-8790. PubMed ID: 28731324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counting bacteria on a microfluidic chip.
    Song Y; Zhang H; Chon CH; Chen S; Pan X; Li D
    Anal Chim Acta; 2010 Nov; 681(1-2):82-6. PubMed ID: 21035606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bacterial proliferation with a microfluidic-based device: Antibiochip.
    Gallo V; Ruiba A; Zanin M; Begnamino P; Ledda S; Pesce T; Melioli G; Pizzi M
    PLoS One; 2020; 15(2):e0223932. PubMed ID: 32107504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.
    Kaushik AM; Hsieh K; Chen L; Shin DJ; Liao JC; Wang TH
    Biosens Bioelectron; 2017 Nov; 97():260-266. PubMed ID: 28609716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility.
    Jo N; Kim B; Lee SM; Oh J; Park IH; Jin Lim K; Shin JS; Yoo KH
    Biosens Bioelectron; 2018 Apr; 102():164-170. PubMed ID: 29132052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid screening of antibiotic toxicity in an automated microdroplet system.
    Churski K; Kaminski TS; Jakiela S; Kamysz W; Baranska-Rybak W; Weibel DB; Garstecki P
    Lab Chip; 2012 May; 12(9):1629-37. PubMed ID: 22422170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging technologies for antibiotic susceptibility testing.
    Behera B; Anil Vishnu GK; Chatterjee S; Sitaramgupta V VSN; Sreekumar N; Nagabhushan A; Rajendran N; Prathik BH; Pandya HJ
    Biosens Bioelectron; 2019 Oct; 142():111552. PubMed ID: 31421358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever.
    Hwang KS; Lee JH; Park J; Yoon DS; Park JH; Kim TS
    Lab Chip; 2004 Dec; 4(6):547-52. PubMed ID: 15570363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes.
    Lee SH; Ahn JY; Lee KA; Um HJ; Sekhon SS; Sun Park T; Min J; Kim YH
    Biosens Bioelectron; 2015 Jun; 68():272-280. PubMed ID: 25590973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.