BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27698393)

  • 1. Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces.
    Janipour M; Misirlioglu IB; Sendur K
    Sci Rep; 2016 Oct; 6():34071. PubMed ID: 27698393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Theoretical Treatment of THz Resonances in Semiconductor GaAs p-n Junctions.
    Janipour M; Misirlioglu IB; Sendur K
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31362342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion relation for surface plasmon polaritons on a Schottky junction.
    Wijesinghe T; Premaratne M
    Opt Express; 2012 Mar; 20(7):7151-64. PubMed ID: 22453397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon-Polaritonic Material.
    Maurya KC; Rao D; Acharya S; Rao P; Pillai AIK; Selvaraja SK; Garbrecht M; Saha B
    Nano Lett; 2022 Jul; 22(13):5182-5190. PubMed ID: 35713183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz optoelectronics with surface plasmon polariton diode.
    Vinnakota RK; Genov DA
    Sci Rep; 2014 May; 4():4899. PubMed ID: 24811083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of surface plasmon-phonon polaritons with terahertz radiation in heavily doped GaAs epilayers.
    Shalygin VA; Moldavskaya MD; Panevin VY; Galimov AI; Melentev GA; Artemyev AA; Firsov DA; Vorobjev LE; Klimko GV; Usikova AA; Komissarova TA; Sedova IV; Ivanov SV
    J Phys Condens Matter; 2019 Mar; 31(10):105002. PubMed ID: 30583291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon polaritons at linearly graded semiconductor interfaces.
    Blazek D; Cada M; Pistora J
    Opt Express; 2015 Mar; 23(5):6264-76. PubMed ID: 25836847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition from surface phonon-polariton to surface phonon-plasmon-polariton by thermal injection of free carriers.
    El-Helou Y; Wu KT; Bruyant A; Woon WY; Kazan M
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35417887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polaritons in hollow cylinders in the presence of a dc magnetic field.
    Farias GA; Nobre EF; Moretzsohn R; Almeida NS; Cottam MG
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2449-55. PubMed ID: 12469740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric characterization of surface plasmon polaritons at a lossy interface.
    Martinez-Herrero R; Garcia-Ruiz A; Manjavacas A
    Opt Express; 2015 Nov; 23(22):28574-83. PubMed ID: 26561127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO as a tunable metal: new types of surface plasmon polaritons.
    Kalusniak S; Sadofev S; Henneberger F
    Phys Rev Lett; 2014 Apr; 112(13):137401. PubMed ID: 24745452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon polariton amplification in metal-semiconductor structures.
    Fedyanin DY; Arsenin AV
    Opt Express; 2011 Jun; 19(13):12524-31. PubMed ID: 21716493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals.
    Schimpf AM; Thakkar N; Gunthardt CE; Masiello DJ; Gamelin DR
    ACS Nano; 2014 Jan; 8(1):1065-72. PubMed ID: 24359559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial.
    Dai S; Ma Q; Liu MK; Andersen T; Fei Z; Goldflam MD; Wagner M; Watanabe K; Taniguchi T; Thiemens M; Keilmann F; Janssen GC; Zhu SE; Jarillo-Herrero P; Fogler MM; Basov DN
    Nat Nanotechnol; 2015 Aug; 10(8):682-6. PubMed ID: 26098228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental limits to graphene plasmonics.
    Ni GX; McLeod AS; Sun Z; Wang L; Xiong L; Post KW; Sunku SS; Jiang BY; Hone J; Dean CR; Fogler MM; Basov DN
    Nature; 2018 May; 557(7706):530-533. PubMed ID: 29795255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly confined surface plasmon polaritons in the ultraviolet region.
    Chubchev ED; Nechepurenko IA; Dorofeenko AV; Vinogradov AP; Lisyansky AA
    Opt Express; 2018 Apr; 26(7):9050-9062. PubMed ID: 29715863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.
    Zhang K; Chen TY; Shi WB; Li CY; Fan RH; Wang QJ; Peng RW; Wang M
    Opt Lett; 2017 Jul; 42(14):2834-2837. PubMed ID: 28708181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image polaritons in boron nitride for extreme polariton confinement with low losses.
    Lee IH; He M; Zhang X; Luo Y; Liu S; Edgar JH; Wang K; Avouris P; Low T; Caldwell JD; Oh SH
    Nat Commun; 2020 Jul; 11(1):3649. PubMed ID: 32686672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-Sb-S Ternary Semiconductor Nanoparticle Plasmonics.
    Liu G; Qi S; Chen J; Lou Y; Zhao Y; Burda C
    Nano Lett; 2021 Mar; 21(6):2610-2617. PubMed ID: 33705150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flat top surface plasmon polariton beams.
    Zundel L; Martinez-Herrero R; Manjavacas A
    Opt Lett; 2017 Oct; 42(20):4143-4146. PubMed ID: 29028033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.