These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27698393)

  • 21. Tunable non-reciprocal waveguide using spoof plasmon polariton coupling to a gaseous magnetoplasmon.
    Cappelli MA; Mehrpour Bernety H; Sun D; Houriez L; Wang B
    Opt Lett; 2023 Jul; 48(14):3725-3728. PubMed ID: 37450735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homogenization of plasmonic crystals: seeking the epsilon-near-zero effect.
    Maier M; Mattheakis M; Kaxiras E; Luskin M; Margetis D
    Proc Math Phys Eng Sci; 2019 Oct; 475(2230):20190220. PubMed ID: 31736641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of surface plasmon polaritons on photorefractive effect in dye doped liquid crystal cells with ZnSe interlayers.
    Xue T; Zhao H; Meng C; Fu J; Zhang J
    Opt Express; 2014 Aug; 22(17):20964-72. PubMed ID: 25321297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing Far-Infrared Surface Phonon Polaritons in Semiconductor Nanostructures at Nanoscale.
    Qi R; Wang R; Li Y; Sun Y; Chen S; Han B; Li N; Zhang Q; Liu X; Yu D; Gao P
    Nano Lett; 2019 Aug; 19(8):5070-5076. PubMed ID: 31322902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersion Theory of Surface Plasmon Polaritons on Bilayer Graphene Metasurfaces.
    Liu YQ; Ren Z; Yin H; Sun J; Li L
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of long-range surface plasmon polaritons in nonlinear plasmonic waveguides using pseudospectral method.
    Huang CC
    Opt Express; 2012 Aug; 20(17):18665-78. PubMed ID: 23038508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces.
    Wu Y; Ou Q; Dong S; Hu G; Si G; Dai Z; Qiu CW; Fuhrer MS; Mokkapati S; Bao Q
    Adv Mater; 2021 Jul; 33(26):e2008070. PubMed ID: 33998712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exact surface-plasmon polariton solutions at a lossy interface.
    Norrman A; Setälä T; Friberg AT
    Opt Lett; 2013 Apr; 38(7):1119-21. PubMed ID: 23546263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage.
    Hu H; Zhai F; Hu D; Li Z; Bai B; Yang X; Dai Q
    Nanoscale; 2015 Dec; 7(46):19493-500. PubMed ID: 26530788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing Spectral Reflection through Controlled Phase Distribution Using Doped Polar-Dielectric Metasurfaces.
    Janipour M; Şendur K
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32344800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polariton design and modulation via van der Waals/doped semiconductor heterostructures.
    He M; Matson JR; Yu M; Cleri A; Sunku SS; Janzen E; Mastel S; Folland TG; Edgar JH; Basov DN; Maria JP; Law S; Caldwell JD
    Nat Commun; 2023 Dec; 14(1):7965. PubMed ID: 38042825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities.
    Faucheaux JA; Stanton AL; Jain PK
    J Phys Chem Lett; 2014 Mar; 5(6):976-85. PubMed ID: 26270976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces.
    Buddhiraju S; Shi Y; Song A; Wojcik C; Minkov M; Williamson IAD; Dutt A; Fan S
    Nat Commun; 2020 Feb; 11(1):674. PubMed ID: 32015328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable surface plasmon-polaritons based on quantum coherence.
    Din RU; Zeng XD; Ge GQ; Zubairy MS
    Opt Express; 2019 Jan; 27(1):322-336. PubMed ID: 30645377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scattering of a surface plasmon polariton by a localized dielectric surface defect.
    Arias RE; Maradudin AA
    Opt Express; 2013 Apr; 21(8):9734-56. PubMed ID: 23609682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.
    Lin X; Yang Y; Rivera N; López JJ; Shen Y; Kaminer I; Chen H; Zhang B; Joannopoulos JD; Soljačić M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6717-6721. PubMed ID: 28611222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers.
    Campione S; Kim I; de Ceglia D; Keeler GA; Luk TS
    Opt Express; 2016 Aug; 24(16):18782-9. PubMed ID: 27505841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial.
    Gao X; Zhou L; Cui TJ
    Sci Rep; 2015 Mar; 5():9250. PubMed ID: 25783166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface.
    Ingram DB; Linic S
    J Am Chem Soc; 2011 Apr; 133(14):5202-5. PubMed ID: 21425795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.