BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27699059)

  • 1. Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo.
    Li J; Zhi W; Xu T; Shi F; Duan K; Wang J; Mu Y; Weng J
    Regen Biomater; 2016 Oct; 3(5):285-297. PubMed ID: 27699059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of host blood vessels to graded distribution of macro-pores size in the process of ectopic osteogenesis.
    Li J; Xu T; Hou W; Liu F; Qing W; Huang L; Ma G; Mu Y; Weng J
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110641. PubMed ID: 32228974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures.
    Wang H; Zhi W; Lu X; Li X; Duan K; Duan R; Mu Y; Weng J
    Acta Biomater; 2013 Sep; 9(9):8413-21. PubMed ID: 23732684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.
    Zhi W; Zhang C; Duan K; Li X; Qu S; Wang J; Zhu Z; Huang P; Xia T; Liao G; Weng J
    J Biomed Mater Res A; 2014 Aug; 102(8):2491-501. PubMed ID: 23946164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.
    Kane RJ; Weiss-Bilka HE; Meagher MJ; Liu Y; Gargac JA; Niebur GL; Wagner DR; Roeder RK
    Acta Biomater; 2015 Apr; 17():16-25. PubMed ID: 25644451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acellular hydroxyapatite-collagen scaffolds support angiogenesis and osteogenic gene expression in an ectopic murine model: Effects of hydroxyapatite volume fraction.
    Meagher MJ; Weiss-Bilka HE; Best ME; Boerckel JD; Wagner DR; Roeder RK
    J Biomed Mater Res A; 2016 Sep; 104(9):2178-88. PubMed ID: 27112109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel porous hydroxyapatite scaffold (pHAMG) enhances angiogenesis and osteogenesis around dental implants by regulating the immune microenvironment.
    Li P; Tian X; Zhou X; Xun Q; Zheng J; Mu Y; Liao J
    Clin Oral Investig; 2023 Nov; 27(11):6879-6889. PubMed ID: 37843634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria.
    Liu F; Liu Y; Li X; Wang X; Li D; Chung S; Chen C; Lee IS
    J Biomater Appl; 2019 Apr; 33(9):1168-1177. PubMed ID: 30665312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells.
    Dong J; Kojima H; Uemura T; Kikuchi M; Tateishi T; Tanaka J
    J Biomed Mater Res; 2001 Nov; 57(2):208-16. PubMed ID: 11484183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.
    Guillaume O; Geven MA; Sprecher CM; Stadelmann VA; Grijpma DW; Tang TT; Qin L; Lai Y; Alini M; de Bruijn JD; Yuan H; Richards RG; Eglin D
    Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.
    Huri PY; Ozilgen BA; Hutton DL; Grayson WL
    Biomed Mater; 2014 Aug; 9(4):045003. PubMed ID: 24945873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes.
    Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K
    J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering. III: Characterization of porous structure.
    Zhang J; Xiao D; He X; Shi F; Luo P; Zhi W; Duan K; Weng J
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():223-229. PubMed ID: 29752092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth.
    Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles.
    Aboushelib MN; Shawky R
    Int J Implant Dent; 2017 Dec; 3(1):21. PubMed ID: 28527036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.