These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27699059)

  • 21. Fabrication of 1-dimensional porous hydroxyapatite and evaluation of its osteoconductivity.
    Ryu HS; Kim SJ; Kim JH; Kim H; Hong KS; Chang BS; Lee DH; Lee JH; Lee CK; Chung SS
    J Mater Sci Mater Med; 2004 Mar; 15(3):267-73. PubMed ID: 15334999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-decorated hydroxyapatite scaffold with on-demand delivery of dexamethasone and stromal cell derived factor-1 for enhanced osteogenesis.
    Zhang B; Li H; He L; Han Z; Zhou T; Zhi W; Lu X; Lu X; Weng J
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():355-370. PubMed ID: 29752108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model.
    Magnaudeix A; Usseglio J; Lasgorceix M; Lalloue F; Damia C; Brie J; Pascaud-Mathieu P; Champion E
    Acta Biomater; 2016 Jul; 38():179-89. PubMed ID: 27131570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways.
    Xiao X; Wang W; Liu D; Zhang H; Gao P; Geng L; Yuan Y; Lu J; Wang Z
    Sci Rep; 2015 Mar; 5():9409. PubMed ID: 25797242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone.
    Entezari A; Roohani I; Li G; Dunstan CR; Rognon P; Li Q; Jiang X; Zreiqat H
    Adv Healthc Mater; 2019 Jan; 8(1):e1801353. PubMed ID: 30536610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo.
    Guda T; Walker JA; Singleton B; Hernandez J; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomater Appl; 2014 Mar; 28(7):1016-27. PubMed ID: 23771772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing.
    Simon JL; Michna S; Lewis JA; Rekow ED; Thompson VP; Smay JE; Yampolsky A; Parsons JR; Ricci JL
    J Biomed Mater Res A; 2007 Dec; 83(3):747-58. PubMed ID: 17559109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.
    Deliormanli AM; Liu X; Rahaman MN
    J Biomater Appl; 2014 Jan; 28(5):643-53. PubMed ID: 23241965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of polymeric scaffolds with a controlled distribution of pores.
    Capes JS; Ando HY; Cameron RE
    J Mater Sci Mater Med; 2005 Dec; 16(12):1069-75. PubMed ID: 16362203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics.
    Mastrogiacomo M; Scaglione S; Martinetti R; Dolcini L; Beltrame F; Cancedda R; Quarto R
    Biomaterials; 2006 Jun; 27(17):3230-7. PubMed ID: 16488007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds.
    Román J; Cabañas MV; Peña J; Vallet-Regí M
    Sci Technol Adv Mater; 2011 Aug; 12(4):045003. PubMed ID: 27877422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.