These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27699278)

  • 1. Resolving spatiotemporal characteristics of the seasonal hypoxia cycle in shallow estuarine environments of the Severn River and South River, MD, Chesapeake Bay, USA.
    Muller AC; Muller DL; Muller A
    Heliyon; 2016 Sep; 2(9):e00157. PubMed ID: 27699278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tidal flooding on estuarine biogeochemistry: Quantifying flood-driven nitrogen inputs in an urban, lower Chesapeake Bay sub-tributary.
    Macías-Tapia A; Mulholland MR; Selden CR; Loftis JD; Bernhardt PW
    Water Res; 2021 Aug; 201():117329. PubMed ID: 34161874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the benthic index of biotic integrity to environmental monitoring in Chesapeake Bay.
    Llansó RJ; Dauer DM; Vølstad JH; Scott LC
    Environ Monit Assess; 2003; 81(1-3):163-74. PubMed ID: 12620013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and significance of phytoplankton species composition within Chesapeake Bay and Virginia tributaries through a long-term monitoring program.
    Marshall HG; Lane MF; Nesius KK; Burchardt L
    Environ Monit Assess; 2009 Mar; 150(1-4):143-55. PubMed ID: 19067200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (Ameiurus nebulosus) in Chesapeake Bay tributaries.
    Pinkney AE; Harshbarger JC; Karouna-Renier NK; Jenko K; Balk L; Skarphéðinsdóttir H; Liewenborg B; Rutter MA
    Sci Total Environ; 2011 Dec; 410-411():248-57. PubMed ID: 21995877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Worsened physical condition due to climate change contributes to the increasing hypoxia in Chesapeake Bay.
    Du J; Shen J; Park K; Wang YP; Yu X
    Sci Total Environ; 2018 Jul; 630():707-717. PubMed ID: 29494978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of Irgarol 1051 and its major metabolite in Maryland waters of Chesapeake Bay.
    Hall LW; Killen WD; Gardinali PR
    Mar Pollut Bull; 2004 Mar; 48(5-6):554-62. PubMed ID: 14980471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplastics and other anthropogenic particles in the surface waters of the Chesapeake Bay.
    Bikker J; Lawson J; Wilson S; Rochman CM
    Mar Pollut Bull; 2020 Jul; 156():111257. PubMed ID: 32510399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.
    Rice KC; Hong B; Shen J
    J Environ Manage; 2012 Nov; 111():61-9. PubMed ID: 22820747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agricultural pesticides and selected degradation products in five tidal regions and the main stem of Chesapeake Bay, USA.
    McConnell LL; Rice CP; Hapeman CJ; Drakeford L; Harman-Fetcho JA; Bialek K; Fulton MH; Leight AK; Allen G
    Environ Toxicol Chem; 2007 Dec; 26(12):2567-78. PubMed ID: 18020682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High salinity tolerance of invasive blue catfish suggests potential for further range expansion in the Chesapeake Bay region.
    Nepal V; Fabrizio MC
    PLoS One; 2019; 14(11):e0224770. PubMed ID: 31689331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of benthic condition in several small watersheds of the Chesapeake Bay, USA.
    Leight AK; Slacum WH; Wirth EF; Fulton MH
    Environ Monit Assess; 2011 May; 176(1-4):483-500. PubMed ID: 20632087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chesapeake Bay Dissolved Oxygen Criterion Attainment Deficit: Three Decades of Temporal and Spatial Patterns.
    Zhang Q; Tango PJ; Murphy RR; Forsyth MK; Tian R; Keisman J; Trentacoste EM
    Front Mar Sci; 2018; 5():. PubMed ID: 31534947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a multimetric water quality Indicator for tracking progress towards the achievement of Chesapeake Bay water quality standards.
    Hernandez Cordero AL; Tango PJ; Batiuk RA
    Environ Monit Assess; 2020 Jan; 192(2):94. PubMed ID: 31907685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay.
    Dauer DM; Llansó RJ
    Environ Monit Assess; 2003; 81(1-3):175-86. PubMed ID: 12620014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High prevalence of biliary neoplasia in white perch Morone americana: potential roles of bile duct parasites and environmental contaminants.
    Matsche MA; Blazer VS; Pulster EL; Mazik PM
    Dis Aquat Organ; 2020 Nov; 141():195-224. PubMed ID: 33150869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments.
    Rich JJ; Dale OR; Song B; Ward BB
    Microb Ecol; 2008 Feb; 55(2):311-20. PubMed ID: 17619213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological condition of US Mid-Atlantic estuaries, 1997-1998.
    Kiddon JA; Paul JF; Buffum HW; Strobel CS; Hale SS; Cobb D; Brown BS
    Mar Pollut Bull; 2003 Oct; 46(10):1224-44. PubMed ID: 14550336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential migration in Chesapeake Bay striped bass.
    Secor DH; O'Brien MHP; Gahagan BI; Watterson JC; Fox DA
    PLoS One; 2020; 15(5):e0233103. PubMed ID: 32407398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncultivated Viral Populations Dominate Estuarine Viromes on the Spatiotemporal Scale.
    Sun M; Zhan Y; Marsan D; Páez-Espino D; Cai L; Chen F
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.