BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 27699487)

  • 21. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust.
    Feng H; Zhang Q; Wang Q; Wang X; Liu J; Li M; Huang L; Kang Z
    Plant Mol Biol; 2013 Nov; 83(4-5):433-43. PubMed ID: 23864359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina.
    Chen M; Cao Z
    BMC Genomics; 2015 Sep; 16(1):696. PubMed ID: 26370267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A wheat COP9 subunit 5-like gene is negatively involved in host response to leaf rust.
    Zhang H; Wang X; Giroux MJ; Huang L
    Mol Plant Pathol; 2017 Jan; 18(1):125-133. PubMed ID: 27581057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans.
    Luan Y; Cui J; Zhai J; Li J; Han L; Meng J
    Planta; 2015 Jun; 241(6):1405-16. PubMed ID: 25697288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing.
    Song QX; Liu YF; Hu XY; Zhang WK; Ma B; Chen SY; Zhang JS
    BMC Plant Biol; 2011 Jan; 11():5. PubMed ID: 21219599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of miRNAs and their target genes using deep sequencing and degradome analysis in trifoliate orange [Poncirus trifoliata L. Raf] [corrected].
    Zhang JZ; Ai XY; Guo WW; Peng SA; Deng XX; Hu CG
    Mol Biotechnol; 2012 May; 51(1):44-57. PubMed ID: 21796478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small RNA and Degradome Sequencing Reveal Complex Roles of miRNAs and Their Targets in Developing Wheat Grains.
    Li T; Ma L; Geng Y; Hao C; Chen X; Zhang X
    PLoS One; 2015; 10(10):e0139658. PubMed ID: 26426440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis.
    Zhang Y; Zhu X; Chen X; Song C; Zou Z; Wang Y; Wang M; Fang W; Li X
    BMC Plant Biol; 2014 Oct; 14():271. PubMed ID: 25330732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV.
    Ragupathy R; Ravichandran S; Mahdi MS; Huang D; Reimer E; Domaratzki M; Cloutier S
    Sci Rep; 2016 Dec; 6():39373. PubMed ID: 28004741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves.
    Jin W; Wu F
    BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.).
    Su C; Yang X; Gao S; Tang Y; Zhao C; Li L
    Genomics; 2014 Apr; 103(4):298-307. PubMed ID: 24667243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress.
    Su Y; Xiao X; Ling H; Huang N; Liu F; Su W; Zhang Y; Xu L; Muhammad K; Que Y
    BMC Genomics; 2019 Jan; 20(1):57. PubMed ID: 30658590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploration of wheat yellow mosaic virus-responsive miRNAs and their targets in wheat by miRNA and degradome sequencing.
    Wu B; Jiang S; Zhang M; Guo X; Wang S; Xin X
    J Biosci; 2021; 46():. PubMed ID: 34423785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H; Able AJ; Able JA
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing.
    Kurtoglu KY; Kantar M; Lucas SJ; Budak H
    PLoS One; 2013; 8(7):e69801. PubMed ID: 23936103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.
    Feng J; Wang J; Fan P; Jia W; Nie L; Jiang P; Chen X; Lv S; Wan L; Chang S; Li S; Li Y
    BMC Plant Biol; 2015 Feb; 15():63. PubMed ID: 25848810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA-mediated susceptible poplar gene expression regulation associated with the infection of virulent Melampsora larici-populina.
    Li D; Wang F; Wang C; Zou L; Wang Z; Chen Q; Niu C; Zhang R; Ling Y; Wang B
    BMC Genomics; 2016 Jan; 17():59. PubMed ID: 26768277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.
    Rinaldo A; Gilbert B; Boni R; Krattinger SG; Singh D; Park RF; Lagudah E; Ayliffe M
    Plant Biotechnol J; 2017 Jul; 15(7):894-905. PubMed ID: 28005310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection.
    Chandra S; Singh D; Pathak J; Kumari S; Kumar M; Poddar R; Balyan HS; Gupta PK; Prabhu KV; Mukhopadhyay K
    PLoS One; 2016; 11(2):e0148453. PubMed ID: 26840746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.