These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27699703)

  • 1. Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase.
    Patil MD; Patel G; Surywanshi B; Shaikh N; Garg P; Chisti Y; Banerjee UC
    AMB Express; 2016 Dec; 6(1):84. PubMed ID: 27699703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic disruption of Pseudomonas putida for the release of arginine deiminase: Kinetics and predictive models.
    Patil MD; Dev MJ; Tangadpalliwar S; Patel G; Garg P; Chisti Y; Banerjee UC
    Bioresour Technol; 2017 Jun; 233():74-83. PubMed ID: 28260664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effect of attrition and ultrasound on the disruption of Pseudomonas putida for the efficient release of arginine deiminase.
    Patil MD; Shinde AS; Dev MJ; Patel G; Bhilare KD; Banerjee UC
    Biotechnol Prog; 2018 Sep; 34(5):1185-1194. PubMed ID: 29885035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of response surface method for maximizing the production of arginine deiminase by
    Patil MD; Shinde KD; Patel G; Chisti Y; Banerjee UC
    Biotechnol Rep (Amst); 2016 Jun; 10():29-37. PubMed ID: 28352521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of L-citrulline.
    Su L; Ma Y; Wu J
    Bioresour Technol; 2015 Nov; 196():176-83. PubMed ID: 26233330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of arginine deiminase from Pseudomonas putida: Structural insights of the differential affinities of l-arginine analogues.
    Patil MD; Rathod VP; Bihade UR; Banerjee UC
    J Biosci Bioeng; 2019 Feb; 127(2):129-137. PubMed ID: 30143336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel algorithms and evolutionary hybrid tools for enhanced production of arginine deiminase from Pseudomonas furukawaii RS3.
    Dhankhar R; Kumar A; Kumar S; Chhabra D; Shukla P; Gulati P
    Bioresour Technol; 2019 Oct; 290():121789. PubMed ID: 31326652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of a recombinant yeast for the release of beta-galactosidase.
    Garrido F; Banerjee UC; Chisti Y; Moo-Young M
    Bioseparation; 1994 Oct; 4(5):319-28. PubMed ID: 7765495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced disruption of Candida utilis using enzymatic pretreatment and high-pressure homogenization.
    Baldwin CV; Robinson CW
    Biotechnol Bioeng; 1994 Jan; 43(1):46-56. PubMed ID: 18613309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of response surface methodology and artificial neural network to enhance the release of reducing sugars from non-edible seed cake by autoclave assisted HCl hydrolysis.
    Shet VB; Palan AM; Rao SU; Varun C; Aishwarya U; Raja S; Goveas LC; Vaman Rao C; Ujwal P
    3 Biotech; 2018 Feb; 8(2):127. PubMed ID: 29450117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis.
    Haque S; Khan S; Wahid M; Dar SA; Soni N; Mandal RK; Singh V; Tiwari D; Lohani M; Areeshi MY; Govender T; Kruger HG; Jawed A
    Front Microbiol; 2016; 7():1852. PubMed ID: 27920762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEGylation and pharmacological characterization of a potential anti-tumor drug, an engineered arginine deiminase originated from Pseudomonas plecoglossicida.
    Zhang L; Liu M; Jamil S; Han R; Xu G; Ni Y
    Cancer Lett; 2015 Feb; 357(1):346-354. PubMed ID: 25462857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical/Physical Methods of Cell Disruption and Tissue Homogenization.
    Goldberg S
    Methods Mol Biol; 2021; 2261():563-585. PubMed ID: 33421015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis.
    Wang M; Basu A; Palm T; Hua J; Youngster S; Hwang L; Liu HC; Li X; Peng P; Zhang Y; Zhao H; Zhang Z; Longley C; Mehlig M; Borowski V; Sai P; Viswanathan M; Jang E; Petti G; Liu S; Yang K; Filpula D
    Bioconjug Chem; 2006; 17(6):1447-59. PubMed ID: 17105223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer.
    Sauer T; Robinson CW; Glick BR
    Biotechnol Bioeng; 1989 Apr; 33(10):1330-42. PubMed ID: 18587868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning modelling for the ultrasonication-mediated disruption of recombinant E. coli for the efficient release of nitrilase.
    Bhilare KD; Patil MD; Tangadpalliwar S; Shinde A; Garg P; Banerjee UC
    Ultrasonics; 2019 Sep; 98():72-81. PubMed ID: 31207474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana.
    Safi C; Cabas Rodriguez L; Mulder WJ; Engelen-Smit N; Spekking W; van den Broek LAM; Olivieri G; Sijtsma L
    Bioresour Technol; 2017 Sep; 239():204-210. PubMed ID: 28521230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid evolution of arginine deiminase for improved anti-tumor activity.
    Ni Y; Liu Y; Schwaneberg U; Zhu L; Li N; Li L; Sun Z
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):193-201. PubMed ID: 21221572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspergillus nidulans thermostable arginine deiminase-Dextran conjugates with enhanced molecular stability, proteolytic resistance, pharmacokinetic properties and anticancer activity.
    El-Sayed ASA; Shindia AA; Zeid AAA; Yassin AM; Sitohy MZ; Sitohy B
    Enzyme Microb Technol; 2019 Dec; 131():109432. PubMed ID: 31615671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The release of virus-like particles from recombinant Saccharomyces cerevisiae: effect of freezing and thawing on homogenization and bead milling.
    Milburn PT; Dunnill P
    Biotechnol Bioeng; 1994 Sep; 44(6):736-44. PubMed ID: 18618834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.