These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27699975)

  • 1. Targeted Nanoparticle Thermometry: A Method to Measure Local Temperature at the Nanoscale Point Where Water Vapor Nucleation Occurs.
    Alaulamie AA; Baral S; Johnson SC; Richardson HH
    Small; 2017 Jan; 13(1):. PubMed ID: 27699975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of vapor formation of water at the solid/water interface to colloidal solutions using optically excited gold nanostructures.
    Baral S; Green AJ; Livshits MY; Govorov AO; Richardson HH
    ACS Nano; 2014 Feb; 8(2):1439-48. PubMed ID: 24476426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-vapor bubble nucleation--a unified approach.
    Kwak HY; Oh SD
    J Colloid Interface Sci; 2004 Oct; 278(2):436-46. PubMed ID: 15450464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady State Vapor Bubble in Pool Boiling.
    Zou A; Chanana A; Agrawal A; Wayner PC; Maroo SC
    Sci Rep; 2016 Feb; 6():20240. PubMed ID: 26837464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of Formation of a Vapor Nanobubble Around a Heated Nanoparticle.
    Maheshwari S; van der Hoef M; Prosperetti A; Lohse D
    J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(36):20571-20580. PubMed ID: 30245761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Bubble Nucleation in Binary Liquids.
    Detert M; Zeng B; Wang Y; Le The H; Zandvliet HJW; Lohse D
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2591-2597. PubMed ID: 32030112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous bubble nucleation in water at negative pressure: a Voronoi polyhedra analysis.
    Abascal JL; Gonzalez MA; Aragones JL; Valeriani C
    J Chem Phys; 2013 Feb; 138(8):084508. PubMed ID: 23464161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring.
    Ferrari A; Hunt J; Stiegman A; Dudley GB
    Molecules; 2015 Dec; 20(12):21672-80. PubMed ID: 26690096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis.
    Lombard J; Biben T; Merabia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043007. PubMed ID: 25974580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermocapillary convection during subcooled boiling in reduced gravity environments.
    Raj R; Kim J
    Ann N Y Acad Sci; 2009 Apr; 1161():173-81. PubMed ID: 19426315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.
    Wang Y; Zaytsev ME; The HL; Eijkel JC; Zandvliet HJ; Zhang X; Lohse D
    ACS Nano; 2017 Feb; 11(2):2045-2051. PubMed ID: 28088847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit.
    Bregar T; Vodopivec M; Pečnik T; Zupančič M; Golobič I
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Study of Bubble Nucleation on a Cavity Substrate Using Molecular Dynamics Simulation.
    Chen Y; Li J; Yu B; Sun D; Zou Y; Han D
    Langmuir; 2018 Nov; 34(47):14234-14248. PubMed ID: 30398360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation probability in binary heterogeneous nucleation of water-n-propanol vapor mixtures on insoluble and soluble nanoparticles.
    Wagner PE; Kaller D; Vrtala A; Lauri A; Kulmala M; Laaksonen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021605. PubMed ID: 12636690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Nanoparticle Thermometry with a Nanopipette.
    Holub M; Adobes-Vidal M; Frutiger A; Gschwend PM; Pratsinis SE; Momotenko D
    ACS Nano; 2020 Jun; 14(6):7358-7369. PubMed ID: 32426962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical heat flux around strongly heated nanoparticles.
    Merabia S; Keblinski P; Joly L; Lewis LJ; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021404. PubMed ID: 19391744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.