These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27700055)

  • 21. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing.
    Li Y; Lin Z; Huang C; Zhang Y; Wang Z; Tang YJ; Chen T; Zhao X
    Metab Eng; 2015 Sep; 31():13-21. PubMed ID: 26141150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A CRISPR/Anti-CRISPR Genome Editing Approach Underlines the Synergy of Butanol Dehydrogenases in Clostridium acetobutylicum DSM 792.
    Wasels F; Chartier G; Hocq R; Lopes Ferreira N
    Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32385078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Escherichia coli Cell Factories for n-Butanol Production.
    Dong H; Zhao C; Zhang T; Lin Z; Li Y; Zhang Y
    Adv Biochem Eng Biotechnol; 2016; 155():141-63. PubMed ID: 25662903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.
    Naduthodi MIS; Barbosa MJ; van der Oost J
    Biotechnol J; 2018 Sep; 13(9):e1700591. PubMed ID: 29396999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9.
    Zhao D; Yuan S; Xiong B; Sun H; Ye L; Li J; Zhang X; Bi C
    Microb Cell Fact; 2016 Dec; 15(1):205. PubMed ID: 27908280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Standardized Iterative Genome Editing Method for
    Fang H; Zhao J; Zhao X; Dong N; Zhao Y; Zhang D
    ACS Synth Biol; 2024 Feb; 13(2):613-623. PubMed ID: 38243901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii.
    Diallo M; Hocq R; Collas F; Chartier G; Wasels F; Wijaya HS; Werten MWT; Wolbert EJH; Kengen SWM; van der Oost J; Ferreira NL; López-Contreras AM
    Methods; 2020 Feb; 172():51-60. PubMed ID: 31362039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
    Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z
    BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the efficiency of gene editing with CRISPR-Cas9 via concurrent expression of the Beta protein.
    Zhao W; Guo Y
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132431. PubMed ID: 38759853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid.
    Zhu M; Sun L; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2019 Sep; 128(3):283-289. PubMed ID: 30967334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered citrate synthase alters Acetate Accumulation in Escherichia coli.
    Tovilla-Coutiño DB; Momany C; Eiteman MA
    Metab Eng; 2020 Sep; 61():171-180. PubMed ID: 32569710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli.
    Nitta K; Laviña WA; Pontrelli S; Liao JC; Putri SP; Fukusaki E
    J Biosci Bioeng; 2019 Mar; 127(3):301-308. PubMed ID: 30482596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.