These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27700113)

  • 41. Strong Light-Matter Interactions in Chiral Plasmonic-Excitonic Systems Assembled on DNA Origami.
    Zhu J; Wu F; Han Z; Shang Y; Liu F; Yu H; Yu L; Li N; Ding B
    Nano Lett; 2021 Apr; 21(8):3573-3580. PubMed ID: 33830773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Manipulating the fluorescence of exciton-plasmon hybrids in the strong coupling regime with dual resonance enhancements.
    Qiu YH; Ding SJ; Nan F; Wang Q; Chen K; Hao ZH; Zhou L; Li X; Wang QQ
    Nanoscale; 2019 Nov; 11(45):22033-22041. PubMed ID: 31714554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sharp bending and power distribution of a focused radially polarized beam by using silicon nanoparticle dimers.
    Deng F; Liu H; Panmai M; Lan S
    Opt Express; 2018 Aug; 26(16):20051-20062. PubMed ID: 30119321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.
    Thomas R; Thomas A; Pullanchery S; Joseph L; Somasundaran SM; Swathi RS; Gray SK; Thomas KG
    ACS Nano; 2018 Jan; 12(1):402-415. PubMed ID: 29261287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles.
    Guo J; Wu F; Song G; Huang Y; Jiao R; Yu L
    Nanoscale; 2021 Oct; 13(37):15812-15818. PubMed ID: 34528651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Double Rabi Splitting in a Strongly Coupled System of Core-Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores.
    Melnikau D; Govyadinov AA; Sánchez-Iglesias A; Grzelczak M; Nabiev IR; Liz-Marzán LM; Rakovich YP
    J Phys Chem Lett; 2019 Oct; 10(20):6137-6143. PubMed ID: 31557038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-particle spectroscopic investigation on the scattering spectrum of Au@MoS
    You J; Xie H; Yang Y; Ni W; Ye W
    Phys Chem Chem Phys; 2022 Mar; 24(10):5780-5785. PubMed ID: 35195130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates.
    Spano FC
    J Chem Phys; 2015 May; 142(18):184707. PubMed ID: 25978905
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe
    Zheng D; Zhang S; Deng Q; Kang M; Nordlander P; Xu H
    Nano Lett; 2017 Jun; 17(6):3809-3814. PubMed ID: 28530102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating.
    Zhai Y; Deng L; Chen Y; Wang N; Huang Y
    J Phys Condens Matter; 2020 Mar; 32(10):105001. PubMed ID: 31658445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal Substrate-Induced Line Width Compression in the Magnetic Dipole Resonance of a Silicon Nanosphere Illuminated by a Focused Azimuthally Polarized Beam.
    Deng F; Liu H; Lan S
    Nanoscale Res Lett; 2018 Dec; 13(1):395. PubMed ID: 30519772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resonance Coupling in Si@WS
    Guo H; Hu Q; Zhang C; Fan Z; Liu H; Wu R; Liu Z; Pan S
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Au@MoS
    Li Y; Cain JD; Hanson ED; Murthy AA; Hao S; Shi F; Li Q; Wolverton C; Chen X; Dravid VP
    Nano Lett; 2016 Dec; 16(12):7696-7702. PubMed ID: 27782405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Designing dielectric resonators on substrates: combining magnetic and electric resonances.
    van de Groep J; Polman A
    Opt Express; 2013 Nov; 21(22):26285-302. PubMed ID: 24216852
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region.
    Ci X; Wu B; Liu Y; Chen G; Wu E; Zeng H
    Opt Express; 2014 Oct; 22(20):23749-58. PubMed ID: 25321953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles.
    Li Y; Wan M; Wu W; Chen Z; Zhan P; Wang Z
    Sci Rep; 2015 Aug; 5():12491. PubMed ID: 26282896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.