These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 27700258)

  • 21. Protective Autoimmunity: A Unifying Model for the Immune Network Involved in CNS Repair.
    Schwartz M; Raposo C
    Neuroscientist; 2014 Aug; 20(4):343-358. PubMed ID: 24395337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunomodulation induced by central nervous system-related peptides as a therapeutic strategy for neurodegenerative disorders.
    Palumbo ML; Moroni AD; Quiroga S; Castro MM; Burgueño AL; Genaro AM
    Pharmacol Res Perspect; 2021 Oct; 9(5):e00795. PubMed ID: 34609083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boosting T-cell immunity as a therapeutic approach for neurodegenerative conditions: the role of innate immunity.
    Schwartz M; London A; Shechter R
    Neuroscience; 2009 Feb; 158(3):1133-42. PubMed ID: 19103265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harnessing the immune system for neuroprotection: therapeutic vaccines for acute and chronic neurodegenerative disorders.
    Schwartz M
    Cell Mol Neurobiol; 2001 Dec; 21(6):617-27. PubMed ID: 12043837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of T helper cells in neuroprotection and regeneration.
    Hendrix S; Nitsch R
    J Neuroimmunol; 2007 Mar; 184(1-2):100-12. PubMed ID: 17198734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beneficial autoimmune T cells and posttraumatic neuroprotection.
    Schwartz M
    Ann N Y Acad Sci; 2000; 917():341-7. PubMed ID: 11268361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sell Memorial Lecture. Helping the body to cure itself: immune modulation by therapeutic vaccination for spinal cord injury.
    Schwartz M
    J Spinal Cord Med; 2003; 26 Suppl 1():S6-10. PubMed ID: 12696569
    [No Abstract]   [Full Text] [Related]  

  • 28. Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury.
    Hayakawa K; Okazaki R; Morioka K; Nakamura K; Tanaka S; Ogata T
    J Neurosci Res; 2014 Dec; 92(12):1647-58. PubMed ID: 25044014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autoimmunity as the body's defense mechanism against the enemy within: Development of therapeutic vaccines for neurodegenerative disorders.
    Schwartz M
    J Neurovirol; 2002 Dec; 8(6):480-5. PubMed ID: 12476343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic vaccination for closed head injury.
    Kipnis J; Nevo U; Panikashvili D; Alexandrovich A; Yoles E; Akselrod S; Shohami E; Schwartz M
    J Neurotrauma; 2003 Jun; 20(6):559-69. PubMed ID: 12906740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macrophage activation and its role in repair and pathology after spinal cord injury.
    Gensel JC; Zhang B
    Brain Res; 2015 Sep; 1619():1-11. PubMed ID: 25578260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macrophages and microglia in central nervous system injury: are they helpful or harmful?
    Schwartz M
    J Cereb Blood Flow Metab; 2003 Apr; 23(4):385-94. PubMed ID: 12679714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sciatic nerve conditioning lesion increases macrophage response but it does not promote the regeneration of injured optic nerves.
    Salegio EA; Pollard AN; Smith M; Zhou XF
    Brain Res; 2010 Nov; 1361():12-22. PubMed ID: 20863815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroprotective effects of nitidine against traumatic CNS injury via inhibiting microglia activation.
    Yuan Y; Zhu F; Pu Y; Wang D; Huang A; Hu X; Qin S; Sun X; Su Z; He C
    Brain Behav Immun; 2015 Aug; 48():287-300. PubMed ID: 25900440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord.
    Zhang B; Gensel JC
    Exp Neurol; 2014 Aug; 258():112-20. PubMed ID: 25017892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macrophage and microglial plasticity in the injured spinal cord.
    David S; Greenhalgh AD; Kroner A
    Neuroscience; 2015 Oct; 307():311-8. PubMed ID: 26342747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glial scar and immune cell involvement in tissue remodeling and repair following acute CNS injuries.
    Raposo C; Schwartz M
    Glia; 2014 Nov; 62(11):1895-904. PubMed ID: 24756949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer 'if' but 'how'.
    Shechter R; Schwartz M
    J Pathol; 2013 Jan; 229(2):332-46. PubMed ID: 23007711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system.
    Kipnis J; Mizrahi T; Hauben E; Shaked I; Shevach E; Schwartz M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15620-5. PubMed ID: 12429857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.