BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27701153)

  • 1. Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties.
    Johnson CD; D'Amato AR; Gilbert RJ
    Cells Tissues Organs; 2016; 202(1-2):116-135. PubMed ID: 27701153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair.
    Liu T; Xu J; Chan BP; Chew SY
    J Biomed Mater Res A; 2012 Jan; 100(1):236-42. PubMed ID: 22042649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun Fibers for Spinal Cord Injury Research and Regeneration.
    Schaub NJ; Johnson CD; Cooper B; Gilbert RJ
    J Neurotrauma; 2016 Aug; 33(15):1405-15. PubMed ID: 26650778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity.
    Lee J; Yoo JJ; Atala A; Lee SJ
    Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterial scaffolds used for the regeneration of spinal cord injury (SCI).
    Kim M; Park SR; Choi BH
    Histol Histopathol; 2014 Nov; 29(11):1395-408. PubMed ID: 24831814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration.
    Wang HB; Mullins ME; Cregg JM; McCarthy CW; Gilbert RJ
    Acta Biomater; 2010 Aug; 6(8):2970-8. PubMed ID: 20167292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment.
    Reise M; Wyrwa R; Müller U; Zylinski M; Völpel A; Schnabelrauch M; Berg A; Jandt KD; Watts DC; Sigusch BW
    Dent Mater; 2012 Feb; 28(2):179-88. PubMed ID: 22226009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ibuprofen-loaded poly(trimethylene carbonate-co-ε-caprolactone) electrospun fibres for nerve regeneration.
    Pires LR; Guarino V; Oliveira MJ; Ribeiro CC; Barbosa MA; Ambrosio L; Pêgo AP
    J Tissue Eng Regen Med; 2016 Mar; 10(3):E154-66. PubMed ID: 23950030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.
    Wang HB; Mullins ME; Cregg JM; Hurtado A; Oudega M; Trombley MT; Gilbert RJ
    J Neural Eng; 2009 Feb; 6(1):016001. PubMed ID: 19104139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation.
    Cui W; Li X; Zhu X; Yu G; Zhou S; Weng J
    Biomacromolecules; 2006 May; 7(5):1623-9. PubMed ID: 16677047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold.
    Binan L; Tendey C; De Crescenzo G; El Ayoubi R; Ajji A; Jolicoeur M
    Biomaterials; 2014 Jan; 35(2):664-74. PubMed ID: 24161168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury.
    Taylor SJ; Rosenzweig ES; McDonald JW; Sakiyama-Elbert SE
    J Control Release; 2006 Jul; 113(3):226-35. PubMed ID: 16797770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride.
    Jassal M; Sengupta S; Bhowmick S
    J Biomater Sci Polym Ed; 2015; 26(18):1425-38. PubMed ID: 26406285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site.
    Pires LR; Lopes CDF; Salvador D; Rocha DN; Pêgo AP
    J Mater Sci Mater Med; 2017 Sep; 28(10):157. PubMed ID: 28894995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension.
    Schaub NJ; Le Beux C; Miao J; Linhardt RJ; Alauzun JG; Laurencin D; Gilbert RJ
    PLoS One; 2015; 10(9):e0136780. PubMed ID: 26340351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors.
    Kang MS; Kim JH; Singh RK; Jang JH; Kim HW
    Acta Biomater; 2015 Apr; 16():103-16. PubMed ID: 25617805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration.
    Ribeiro-Samy S; Silva NA; Correlo VM; Fraga JS; Pinto L; Teixeira-Castro A; Leite-Almeida H; Almeida A; Gimble JM; Sousa N; Salgado AJ; Reis RL
    Macromol Biosci; 2013 Nov; 13(11):1576-92. PubMed ID: 24038969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model.
    Taylor SJ; Sakiyama-Elbert SE
    J Control Release; 2006 Nov; 116(2):204-10. PubMed ID: 16919351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.