BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27701816)

  • 1. Morita-Baylis-Hillman (MBH) Reaction Derived Nitroallylic Alcohols, Acetates and Amines as Synthons in Organocatalysis and Heterocycle Synthesis.
    Huang WY; Anwar S; Chen K
    Chem Rec; 2017 Mar; 17(3):363-381. PubMed ID: 27701816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts.
    Liu TY; Xie M; Chen YC
    Chem Soc Rev; 2012 Jun; 41(11):4101-12. PubMed ID: 22453359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel organocatalytic activation of unmodified Morita-Baylis-Hillman alcohols for the synthesis of bicyclic α-alkylidene-ketones.
    Stiller J; Kowalczyk D; Jiang H; Jørgensen KA; Albrecht Ł
    Chemistry; 2014 Oct; 20(41):13108-12. PubMed ID: 25156022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral phosphines in nucleophilic organocatalysis.
    Xiao Y; Sun Z; Guo H; Kwon O
    Beilstein J Org Chem; 2014; 10():2089-121. PubMed ID: 25246969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Activation of Unmodified Morita-Baylis-Hillman Alcohols through Phosphine Catalysis for Rapid Construction of Three-Dimensional Heterocyclic Compounds.
    Zhou L; Yuan C; Zeng Y; Wang Q; Wang C; Liu M; Wang W; Wu Y; Zheng B; Guo H
    Org Lett; 2019 Jun; 21(12):4882-4886. PubMed ID: 31187626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Morita-Baylis-Hillman Reaction: Catalyst Development and Mechanistic Insights Based on Mass Spectrometric Back-Reaction Screening.
    Isenegger PG; Bächle F; Pfaltz A
    Chemistry; 2016 Dec; 22(49):17595-17599. PubMed ID: 27775188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organocatalytic one-pot synthesis of highly substituted pyridazines from Morita-Baylis-Hillman carbonates and diazo compounds.
    Mao H; Lin A; Tang Z; Hu H; Zhu C; Cheng Y
    Chemistry; 2014 Feb; 20(9):2454-8. PubMed ID: 24488698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential antioxidant activity of Morita-Baylis-Hillman adducts.
    Elleuch H; Mihoubi W; Mihoubi M; Ketata E; Gargouri A; Rezgui F
    Bioorg Chem; 2018 Aug; 78():24-28. PubMed ID: 29529518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart.
    Masson G; Housseman C; Zhu J
    Angew Chem Int Ed Engl; 2007; 46(25):4614-28. PubMed ID: 17397122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of Dihydroquinolines via Palladium Catalyzed Sequential Amination and Cyclisation of Morita-Baylis-Hillman Alcohols.
    Sruthi PR; Sankar PU; Saranya TV; Anas S
    ChemistrySelect; 2020 Nov; 5(43):13598-13602. PubMed ID: 33363255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Chemo-, Regio-, and Enantioselectivity in Copper Hydride Reductions of Morita-Baylis-Hillman Adducts.
    Linstadt RT; Peterson CA; Jette CI; Boskovic ZV; Lipshutz BH
    Org Lett; 2017 Jan; 19(2):328-331. PubMed ID: 28075138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, biological activities, and structure-activity relationships of Morita-Baylis-Hillman adducts: An update.
    Devi N; Pathania AS; Singh V; Sharma S
    Arch Pharm (Weinheim); 2024 Jul; ():e2400372. PubMed ID: 38963326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective Morita-Baylis-Hillman reaction promoted by L-threonine-derived phosphine-thiourea catalysts.
    Han X; Wang Y; Zhong F; Lu Y
    Org Biomol Chem; 2011 Oct; 9(19):6734-40. PubMed ID: 21858321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile regio- and stereoselective metal-free synthesis of all-carbon tetrasubstituted alkenes bearing a C(sp3)-F unit via dehydroxyfluorination of Morita-Baylis-Hillman (MBH) adducts.
    Takizawa S; Arteaga FA; Kishi K; Hirata S; Sasai H
    Org Lett; 2014 Aug; 16(16):4162-5. PubMed ID: 25089369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organocatalyzed Decarboxylative Trichloromethylation of Morita-Baylis-Hillman Adducts in Batch and Continuous Flow.
    Enevoldsen MV; Overgaard J; Pedersen MS; Lindhardt AT
    Chemistry; 2018 Jan; 24(5):1204-1208. PubMed ID: 29168579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 3,4,5-Trisubstituted Isoxazoles from Morita-Baylis-Hillman Acetates by an NaNO2 /I2 -Mediated Domino Reaction.
    Dighe SU; Mukhopadhyay S; Kolle S; Kanojiya S; Batra S
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10926-30. PubMed ID: 26215456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective, organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman reactions: stereochemical issues.
    Mansilla J; Saá JM
    Molecules; 2010 Feb; 15(2):709-34. PubMed ID: 20335941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of substituted 3-furanoates from MBH-acetates of acetylenic aldehydes via tandem isomerization-deacetylation-cycloisomerization: access to Elliott's alcohol.
    Reddy CR; Krishna G; Reddy MD
    Org Biomol Chem; 2014 Mar; 12(10):1664-70. PubMed ID: 24492976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morita-Baylis-Hillman acetates of acetylenic aldehydes: versatile synthons for substituted pyrroles via a metal-free tandem reaction.
    Reddy CR; Reddy MD; Srikanth B; Prasad KR
    Org Biomol Chem; 2011 Sep; 9(17):6027-33. PubMed ID: 21748180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of dispirocyclohexanes via amine-catalyzed [2 + 2 + 2] annulations of Morita-Baylis-Hillman acetates with exocyclic alkenes.
    Chen R; Xu S; Fan X; Li H; Tang Y; He Z
    Org Biomol Chem; 2015 Jan; 13(2):398-408. PubMed ID: 25369534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.