BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27701819)

  • 1. A Two-Step Method for Transferring Single-Walled Carbon Nanotubes onto a Hydrogel Substrate.
    Imaninezhad M; Kuljanishvili I; Zustiak SP
    Macromol Biosci; 2017 Mar; 17(3):. PubMed ID: 27701819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering.
    Van den Broeck L; Piluso S; Soultan AH; De Volder M; Patterson J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1133-1144. PubMed ID: 30812997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway.
    Sun H; Tang J; Mou Y; Zhou J; Qu L; Duval K; Huang Z; Lin N; Dai R; Liang C; Chen Z; Tang L; Tian F
    Acta Biomater; 2017 Jan; 48():88-99. PubMed ID: 27769942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications.
    Mihajlovic M; Mihajlovic M; Dankers PYW; Masereeuw R; Sijbesma RP
    Macromol Biosci; 2019 Jan; 19(1):e1800173. PubMed ID: 30085403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications.
    Kumar GG; Hashmi S; Karthikeyan C; GhavamiNejad A; Vatankhah-Varnoosfaderani M; Stadler FJ
    Macromol Rapid Commun; 2014 Nov; 35(21):1861-5. PubMed ID: 25228415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity.
    Ravanbakhsh H; Bao G; Latifi N; Mongeau LG
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109861. PubMed ID: 31349421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pristine carbon-nanotube-included supramolecular hydrogels with tunable viscoelastic properties.
    Mandal SK; Kar T; Das PK
    Chemistry; 2013 Sep; 19(37):12486-96. PubMed ID: 23881597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering.
    Kouser R; Vashist A; Zafaryab M; Rizvi MA; Ahmad S
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():168-179. PubMed ID: 29519426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemical preparation of polymer nanocomposites.
    Zhang K; Park BJ; Fang FF; Choi HJ
    Molecules; 2009 Jun; 14(6):2095-110. PubMed ID: 19553883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S; Yamada S; Ramón-Azcón J; Estili M; Liang X; Nakajima K; Shiku H; Khademhosseini A; Matsue T
    Acta Biomater; 2016 Feb; 31():134-143. PubMed ID: 26621696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates.
    Wu S; Duan B; Lu A; Wang Y; Ye Q; Zhang L
    Carbohydr Polym; 2017 Oct; 174():830-840. PubMed ID: 28821138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs.
    Sun H; Zhou J; Huang Z; Qu L; Lin N; Liang C; Dai R; Tang L; Tian F
    Int J Nanomedicine; 2017; 12():3109-3120. PubMed ID: 28450785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering.
    Chen YS; Tsou PC; Lo JM; Tsai HC; Wang YZ; Hsiue GH
    Biomaterials; 2013 Oct; 34(30):7328-34. PubMed ID: 23827188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics.
    Gilshteyn EP; Lin S; Kondrashov VA; Kopylova DS; Tsapenko AP; Anisimov AS; Hart AJ; Zhao X; Nasibulin AG
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28069-28075. PubMed ID: 30052424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior mechanical properties of double-network hydrogels reinforced by carbon nanotubes without organic modification.
    Dong W; Huang C; Wang Y; Sun Y; Ma P; Chen M
    Int J Mol Sci; 2013 Nov; 14(11):22380-94. PubMed ID: 24232456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Strength, Strongly Bonded Nanocomposite Hydrogels for Cartilage Repair.
    Awasthi S; Gaur JK; Pandey SK; Bobji MS; Srivastava C
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24505-24523. PubMed ID: 34027653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Nanotube-Hydrogel Composites Facilitate Neuronal Differentiation While Maintaining Homeostasis of Network Activity.
    Ye L; Ji H; Liu J; Tu CH; Kappl M; Koynov K; Vogt J; Butt HJ
    Adv Mater; 2021 Oct; 33(41):e2102981. PubMed ID: 34453367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.