These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27701861)

  • 1. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
    Dong Y; Parobek D; Rossi D; Son DH
    Nano Lett; 2016 Nov; 16(11):7270-7275. PubMed ID: 27701861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic hot electrons from exciton-to-hot electron upconversion in Mn-doped semiconductor nanocrystals.
    Parobek D; Qiao T; Son DH
    J Chem Phys; 2019 Sep; 151(12):120901. PubMed ID: 31575181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis.
    Dong Y; Choi J; Jeong HK; Son DH
    J Am Chem Soc; 2015 Apr; 137(16):5549-54. PubMed ID: 25860231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.
    Dong Y; Rossi D; Parobek D; Son DH
    Chemphyschem; 2016 Mar; 17(5):660-4. PubMed ID: 26807659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoemission of the Upconverted Hot Electrons in Mn-Doped CsPbBr
    Wang CW; Liu X; Qiao T; Khurana M; Akimov AV; Son DH
    Nano Lett; 2022 Aug; 22(16):6753-6759. PubMed ID: 35939549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Redox-Neutral Photocatalytic Formate to Carbon Monoxide Conversion Enabled by Long-Range Hot Electron Transfer from Mn-Doped Quantum Dots.
    Orrison C; Meeder JR; Zhang B; Puthenpurayil J; Hall MB; Nippe M; Son DH
    J Am Chem Soc; 2021 Jul; 143(27):10292-10300. PubMed ID: 34191502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hole transporting PEDOT:PSS on the photoemission of upconverted hot electron in Mn-doped CdS/ZnS quantum dots.
    Wang CW; Kim HR; Hampton J; Kim D; Tu Q; Pyun JC; Son DH
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37530110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Detection of Quantum Dot Hot Electrons Generated via a Mn
    Barrows CJ; Rinehart JD; Nagaoka H; deQuilettes DW; Salvador M; Chen JI; Ginger DS; Gamelin DR
    J Phys Chem Lett; 2017 Jan; 8(1):126-130. PubMed ID: 27966967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots.
    Wang J; Wang L; Yu S; Ding T; Xiang D; Wu K
    Nat Commun; 2021 Jan; 12(1):550. PubMed ID: 33483503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C
    Shibuta M; Yamamoto K; Ohta T; Inoue T; Mizoguchi K; Nakaya M; Eguchi T; Nakajima A
    ACS Nano; 2021 Jan; 15(1):1199-1209. PubMed ID: 33411503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure.
    Cushing SK; Chen CJ; Dong CL; Kong XT; Govorov AO; Liu RS; Wu N
    ACS Nano; 2018 Jul; 12(7):7117-7126. PubMed ID: 29945441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot electrons in water: injection and ponderomotive acceleration by means of plasmonic nanoelectrodes.
    Zilio P; Dipalo M; Tantussi F; Messina GC; de Angelis F
    Light Sci Appl; 2017 Jun; 6(6):e17002. PubMed ID: 30167264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.
    Yu S; Kim YH; Lee SY; Song HD; Yi J
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11203-7. PubMed ID: 25169852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-electron transfer in quantum-dot heterojunction films.
    Grimaldi G; Crisp RW; Ten Brinck S; Zapata F; van Ouwendorp M; Renaud N; Kirkwood N; Evers WH; Kinge S; Infante I; Siebbeles LDA; Houtepen AJ
    Nat Commun; 2018 Jun; 9(1):2310. PubMed ID: 29899361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoemission Enhancement of Plasmonic Hot Electrons by Au Antenna-Sensitizer Complexes.
    Fang Y; Gao N; Shao L
    ACS Nano; 2024 Jan; 18(4):3397-3404. PubMed ID: 38215310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.