BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27701864)

  • 1. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.
    Grigel V; Dupont D; De Nolf K; Hens Z; Tessier MD
    J Am Chem Soc; 2016 Oct; 138(41):13485-13488. PubMed ID: 27701864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near Infrared Light-Emitting Diodes Based on Colloidal InAs/ZnSe Core/Thick-Shell Quantum Dots.
    Roshan H; Zhu D; Piccinotti D; Dai J; De Franco M; Barelli M; Prato M; De Trizio L; Manna L; Di Stasio F
    Adv Sci (Weinh); 2024 Jun; 11(23):e2400734. PubMed ID: 38622892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InAs Nanorod Colloidal Quantum Dots with Tunable Bandgaps Deep into the Short-Wave Infrared.
    Sheikh T; Mir WJ; Nematulloev S; Maity P; Yorov KE; Hedhili MN; Emwas AH; Khan MS; Abulikemu M; Mohammed OF; Bakr OM
    ACS Nano; 2023 Nov; 17(22):23094-23102. PubMed ID: 37955579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared.
    Kim SW; Zimmer JP; Ohnishi S; Tracy JB; Frangioni JV; Bawendi MG
    J Am Chem Soc; 2005 Aug; 127(30):10526-32. PubMed ID: 16045339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry.
    Ginterseder M; Franke D; Perkinson CF; Wang L; Hansen EC; Bawendi MG
    J Am Chem Soc; 2020 Mar; 142(9):4088-4092. PubMed ID: 32073841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Chemistry in Molten Salts: Synthesis of Luminescent In
    Srivastava V; Kamysbayev V; Hong L; Dunietz E; Klie RF; Talapin DV
    J Am Chem Soc; 2018 Sep; 140(38):12144-12151. PubMed ID: 30125092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.
    Tessier MD; De Nolf K; Dupont D; Sinnaeve D; De Roo J; Hens Z
    J Am Chem Soc; 2016 May; 138(18):5923-9. PubMed ID: 27111735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.
    Laufersky G; Bradley S; Frécaut E; Lein M; Nann T
    Nanoscale; 2018 May; 10(18):8752-8762. PubMed ID: 29708260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InAs/InP/ZnSe Core/Shell/Shell Quantum Dots as Near-Infrared Emitters: Bright, Narrow-Band, Non-Cadmium Containing, and Biocompatible.
    Xie R; Chen K; Chen X; Peng X
    Nano Res; 2008 Dec; 1(6):457-464. PubMed ID: 20631914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots.
    Panzer R; Guhrenz C; Haubold D; Hübner R; Gaponik N; Eychmüller A; Weigand JJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14737-14742. PubMed ID: 28834116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistage Microfluidic Platform for the Continuous Synthesis of III-V Core/Shell Quantum Dots.
    Baek J; Shen Y; Lignos I; Bawendi MG; Jensen KF
    Angew Chem Int Ed Engl; 2018 Aug; 57(34):10915-10918. PubMed ID: 29944772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine.
    Joung S; Yoon S; Han CS; Kim Y; Jeong S
    Nanoscale Res Lett; 2012 Jan; 7(1):93. PubMed ID: 22289352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot heat-up synthesis of short-wavelength infrared, colloidal InAs quantum dots.
    Lee J; Zhao T; Yang S; Muduli M; Murray CB; Kagan CR
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38380752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InP Quantum Dots: Synthesis and Lighting Applications.
    Chen B; Li D; Wang F
    Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Colloidal In(As,P) Quantum Dots Active in the Short-Wave Infrared, Promoting Growth through Temperature Ramps.
    Leemans J; Respekta D; Bai J; Braeuer S; Vanhaecke F; Hens Z
    ACS Nano; 2023 Oct; 17(20):20002-20012. PubMed ID: 37787479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots.
    Yu S; Fan XB; Wang X; Li J; Zhang Q; Xia A; Wei S; Wu LZ; Zhou Y; Patzke GR
    Nat Commun; 2018 Oct; 9(1):4009. PubMed ID: 30275447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials.
    Bahmani Jalali H; De Trizio L; Manna L; Di Stasio F
    Chem Soc Rev; 2022 Dec; 51(24):9861-9881. PubMed ID: 36408788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications.
    Ramasamy P; Kim B; Lee MS; Lee JS
    Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source.
    Byun HJ; Song WS; Yang H
    Nanotechnology; 2011 Jun; 22(23):235605. PubMed ID: 21483087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.