These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27701864)

  • 21. Synthesis of luminescent core/shell α-Zn
    Paredes IJ; Beck C; Lee S; Chen S; Khwaja M; Scimeca MR; Li S; Hwang S; Lian Z; McPeak KM; Shi SF; Sahu A
    Nanoscale; 2020 Oct; 12(40):20952-20964. PubMed ID: 33090173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ZnCl
    Zhu D; Bellato F; Bahmani Jalali H; Di Stasio F; Prato M; Ivanov YP; Divitini G; Infante I; De Trizio L; Manna L
    J Am Chem Soc; 2022 Jun; 144(23):10515-10523. PubMed ID: 35648676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth of InAs Quantum Dots on GaAs (511)A Substrates: The Competition between Thermal Dynamics and Kinetics.
    Wen L; Gao F; Zhang S; Li G
    Small; 2016 Aug; 12(31):4277-85. PubMed ID: 27348495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics.
    Chung H; Cho KS; Koh WK; Kim D; Kim J
    Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near-infrared photoluminescence enhancement in Ge/CdS and Ge/ZnS Core/shell nanocrystals: utilizing IV/II-VI semiconductor epitaxy.
    Guo Y; Rowland CE; Schaller RD; Vela J
    ACS Nano; 2014 Aug; 8(8):8334-43. PubMed ID: 25010416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots.
    Choi MJ; Sagar LK; Sun B; Biondi M; Lee S; Najjariyan AM; Levina L; García de Arquer FP; Sargent EH
    Nano Lett; 2021 Jul; 21(14):6057-6063. PubMed ID: 34250796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear optical properties of InP/ZnS core-shell quantum dots.
    Wang C; Niu R; Zhou Z; Wu W; Chai Z; Song Y; Kong D
    Nanotechnology; 2020 Mar; 31(13):135001. PubMed ID: 31810071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusion dynamics controlled colloidal synthesis of highly monodisperse InAs nanocrystals.
    Kim T; Park S; Jeong S
    Nat Commun; 2021 May; 12(1):3013. PubMed ID: 34021149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties.
    Nam DE; Song WS; Yang H
    J Colloid Interface Sci; 2011 Sep; 361(2):491-6. PubMed ID: 21665220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route.
    Mordvinova N; Vinokurov A; Kuznetsova T; Lebedev OI; Dorofeev S
    Dalton Trans; 2017 Jan; 46(4):1297-1303. PubMed ID: 28067374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lasing from colloidal InP/ZnS quantum dots.
    Gao S; Zhang C; Liu Y; Su H; Wei L; Huang T; Dellas N; Shang S; Mohney SE; Wang J; Xu J
    Opt Express; 2011 Mar; 19(6):5528-35. PubMed ID: 21445191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical properties and structure of Ag-doped InP quantum dots prepared by a phosphine synthetic route.
    Vinokurov A; Chernysheva G; Mordvinova N; Dorofeev S
    Dalton Trans; 2018 Sep; 47(35):12414-12419. PubMed ID: 30131987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical characterization of InAs quantum wells and dots grown radially on wurtzite InP nanowires.
    Lindgren D; Kawaguchi K; Heurlin M; Borgström MT; Pistol ME; Samuelson L; Gustafsson A
    Nanotechnology; 2013 Jun; 24(22):225203. PubMed ID: 23637013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mid-infrared photoluminescence revealing internal quantum efficiency enhancement of type-I and type-II InAs core/shell nanowires.
    Chen X; Alradhi H; Jin ZM; Zhu L; Sanchez AM; Ma S; Zhuang Q; Shao J
    Opt Lett; 2022 Oct; 47(19):5208-5211. PubMed ID: 36181223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General Synthetic Route to High-Quality Colloidal III-V Semiconductor Quantum Dots Based on Pnictogen Chlorides.
    Zhao T; Oh N; Jishkariani D; Zhang M; Wang H; Li N; Lee JD; Zeng C; Muduli M; Choi HJ; Su D; Murray CB; Kagan CR
    J Am Chem Soc; 2019 Sep; 141(38):15145-15152. PubMed ID: 31496238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zn-Doped P-Type InAs Nanocrystal Quantum Dots.
    Asor L; Liu J; Xiang S; Tessler N; Frenkel AI; Banin U
    Adv Mater; 2023 Feb; 35(5):e2208332. PubMed ID: 36398421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and Characterization of InAs/InP and InAs/CdSe Core/Shell Nanocrystals.
    Cao YW; Banin U
    Angew Chem Int Ed Engl; 1999 Dec; 38(24):3692-3694. PubMed ID: 10649327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.
    Zhu H; Prakash A; Benoit DN; Jones CJ; Colvin VL
    Nanotechnology; 2010 Jun; 21(25):255604. PubMed ID: 20516578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boosting the Photoluminescence Efficiency of InAs Nanocrystals Synthesized with Aminoarsine via a ZnSe Thick-Shell Overgrowth.
    Zhu D; Bahmani Jalali H; Saleh G; Di Stasio F; Prato M; Polykarpou N; Othonos A; Christodoulou S; Ivanov YP; Divitini G; Infante I; De Trizio L; Manna L
    Adv Mater; 2023 Sep; 35(38):e2303621. PubMed ID: 37243572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.