BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27702472)

  • 1. Evaluation of cysteine ethyl ester as efficient inducer for glutathione overproduction in Saccharomyces spp.
    Lorenz E; Schmacht M; Senz M
    Enzyme Microb Technol; 2016 Nov; 93-94():122-131. PubMed ID: 27702472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium optimization based on yeast's elemental composition for glutathione production in Saccharomyces cerevisiae.
    Schmacht M; Lorenz E; Stahl U; Senz M
    J Biosci Bioeng; 2017 May; 123(5):555-561. PubMed ID: 28089580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae.
    Lorenz E; Schmacht M; Stahl U; Senz M
    J Biotechnol; 2015 Dec; 216():131-9. PubMed ID: 26516118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.
    Musatti A; Manzoni M; Rollini M
    N Biotechnol; 2013 Jan; 30(2):219-26. PubMed ID: 22705095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-pathway combination for glutathione biosynthesis in Saccharomyces cerevisiae.
    Tang L; Wang W; Zhou W; Cheng K; Yang Y; Liu M; Cheng K; Wang W
    Microb Cell Fact; 2015 Sep; 14():139. PubMed ID: 26377681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8.
    Cha JY; Park JC; Jeon BS; Lee YC; Cho YS
    J Microbiol; 2004 Mar; 42(1):51-5. PubMed ID: 15357293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione accumulation in ethanol-stat fed-batch culture of Saccharomyces cerevisiae with a switch to cysteine feeding.
    Nisamedtinov I; Kevvai K; Orumets K; Rautio JJ; Paalme T
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):175-83. PubMed ID: 20217077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new strategy for improved glutathione production from Saccharomyces cerevisiae: use of cysteine- and glycine-rich chicken feather protein hydrolysate as a new cheap substrate.
    Taskin M
    J Sci Food Agric; 2013 Feb; 93(3):535-41. PubMed ID: 22865342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of intracellular amino acids on GSH production by high-cell-density cultivation of Saccharomyces cerevisiae.
    Wang M; Sun J; Xue F; Shang F; Wang Z; Tan T
    Appl Biochem Biotechnol; 2012 Sep; 168(1):198-205. PubMed ID: 22143994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-glutathione containing yeast Saccharomyces cerevisiae: optimization of production.
    Udeh KO; Achremowicz B
    Acta Microbiol Pol; 1997; 46(1):105-14. PubMed ID: 9271848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.
    Santos LO; Gonzales TA; Ubeda BT; Monte Alegre R
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):763-9. PubMed ID: 17926030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprocess optimization of glutathione production by Saccharomyces boulardii: biochemical characterization of glutathione peroxidase.
    Badr H; El-Baz A; Mohamed I; Shetaia Y; El-Sayed ASA; Sorour N
    Arch Microbiol; 2021 Dec; 203(10):6183-6196. PubMed ID: 34580743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism.
    Chen H; Cao X; Zhu N; Jiang L; Zhang X; He Q; Wei P
    World J Microbiol Biotechnol; 2020 Jul; 36(8):117. PubMed ID: 32676694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7399-404. PubMed ID: 23820559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-production of gamma-glutamylcysteine and glutathione by mutant strain Saccharomyces cerevisiae FC-3 and its kinetic analysis.
    Chen WC; Huang FK; Cheng SC; Tsai FY; Lin CL
    J Basic Microbiol; 2009 Dec; 49(6):513-20. PubMed ID: 19810038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain.
    Eshkol N; Sendovski M; Bahalul M; Katz-Ezov T; Kashi Y; Fishman A
    J Appl Microbiol; 2009 Feb; 106(2):534-42. PubMed ID: 19200319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae.
    Shang F; Wang Z; Tan T
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1233-40. PubMed ID: 18071647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The breeding and culture condition optimization of a high-biomass, selenium-enriched yeast strain].
    Fan XY; Guo XN; Fu XH; He XP; Wang CL; Zhang BR
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):720-4. PubMed ID: 15971586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.