These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 27702475)
1. Overproduction and characterization of a lytic polysaccharide monooxygenase in Bacillus subtilis using an assay based on ascorbate consumption. Yu MJ; Yoon SH; Kim YW Enzyme Microb Technol; 2016 Nov; 93-94():150-156. PubMed ID: 27702475 [TBL] [Abstract][Full Text] [Related]
2. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. Zhang H; Zhao Y; Cao H; Mou G; Yin H Int J Biol Macromol; 2015 Aug; 79():72-5. PubMed ID: 25936286 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional characterization of a small chitin-active lytic polysaccharide monooxygenase domain of a multi-modular chitinase from Jonesia denitrificans. Mekasha S; Forsberg Z; Dalhus B; Bacik JP; Choudhary S; Schmidt-Dannert C; Vaaje-Kolstad G; Eijsink VG FEBS Lett; 2016 Jan; 590(1):34-42. PubMed ID: 26763108 [TBL] [Abstract][Full Text] [Related]
5. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. Paspaliari DK; Loose JS; Larsen MH; Vaaje-Kolstad G FEBS J; 2015 Mar; 282(5):921-36. PubMed ID: 25565565 [TBL] [Abstract][Full Text] [Related]
12. A potent chitinase from Bacillus subtilis for the efficient bioconversion of chitin-containing wastes. Wang D; Li A; Han H; Liu T; Yang Q Int J Biol Macromol; 2018 Sep; 116():863-868. PubMed ID: 29782978 [TBL] [Abstract][Full Text] [Related]
13. Bioconversion of α-Chitin by a Lytic Polysaccharide Monooxygenase Zhao H; Su H; Sun J; Dong H; Mao X J Agric Food Chem; 2024 Apr; 72(13):7256-7265. PubMed ID: 38438973 [TBL] [Abstract][Full Text] [Related]
14. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting α- and β-chitin. Nakagawa YS; Kudo M; Loose JS; Ishikawa T; Totani K; Eijsink VG; Vaaje-Kolstad G FEBS J; 2015 Mar; 282(6):1065-79. PubMed ID: 25605134 [TBL] [Abstract][Full Text] [Related]
15. Kinetic insights into the role of the reductant in H Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757 [TBL] [Abstract][Full Text] [Related]
16. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption. Valenzuela SV; Ferreres G; Margalef G; Pastor FIJ Carbohydr Res; 2017 Aug; 448():205-211. PubMed ID: 28366436 [TBL] [Abstract][Full Text] [Related]
17. A novel expression system for lytic polysaccharide monooxygenases. Courtade G; Le SB; Sætrom GI; Brautaset T; Aachmann FL Carbohydr Res; 2017 Aug; 448():212-219. PubMed ID: 28291518 [TBL] [Abstract][Full Text] [Related]
18. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. Kuusk S; Eijsink VGH; Väljamäe P J Biol Chem; 2023 Sep; 299(9):105094. PubMed ID: 37507015 [TBL] [Abstract][Full Text] [Related]
19. Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Li J; Goddard-Borger ED; Raji O; Saxena H; Solhi L; Mathieu Y; Master ER; Wakarchuk WW; Brumer H Appl Environ Microbiol; 2022 Aug; 88(15):e0096822. PubMed ID: 35862679 [TBL] [Abstract][Full Text] [Related]