BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27702485)

  • 1. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli.
    Zhang N; Wang J; Zhang Y; Gao H
    Enzyme Microb Technol; 2016 Nov; 93-94():51-58. PubMed ID: 27702485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli.
    Wang X; Xu N; Hu S; Yang J; Gao Q; Xu S; Chen K; Ouyang P
    Bioresour Technol; 2018 Feb; 250():406-412. PubMed ID: 29195152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production.
    Jing P; Cao X; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2018 Nov; 126(5):547-552. PubMed ID: 29945765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.
    Valdehuesa KN; Lee WK; Ramos KR; Cabulong RB; Choi J; Liu H; Nisola GM; Chung WJ
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1761-72. PubMed ID: 26048478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass.
    Cao Y; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2015 Dec; 5():18149. PubMed ID: 26670289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering a novel D-xylonate-responsive promoter: the P
    Bañares AB; Valdehuesa KNG; Ramos KRM; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8063-8074. PubMed ID: 31482281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic pathway optimization for improved 1,2,4-butanetriol production.
    Sun L; Yang F; Sun H; Zhu T; Li X; Li Y; Xu Z; Zhang Y
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):67-78. PubMed ID: 26498325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance.
    Yukawa T; Bamba T; Guirimand G; Matsuda M; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2021 Jan; 118(1):175-185. PubMed ID: 32902873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli.
    Wang Y; Xian M; Feng X; Liu M; Zhao G
    Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of D-xylonate dehydratase YjhG from Escherichia coli.
    Jiang Y; Liu W; Cheng T; Cao Y; Zhang R; Xian M
    Bioengineered; 2015; 6(4):227-32. PubMed ID: 26083940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes.
    Atsumi S; Wu TY; Eckl EM; Hawkins SD; Buelter T; Liao JC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):651-7. PubMed ID: 19609521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli.
    Li P; Wang M; Di H; Du Q; Zhang Y; Tan X; Xu P; Gao C; Jiang T; Lü C; Ma C
    Microb Cell Fact; 2024 Feb; 23(1):49. PubMed ID: 38347493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.
    Lu X; He S; Zong H; Song J; Chen W; Zhuge B
    World J Microbiol Biotechnol; 2016 Sep; 32(9):149. PubMed ID: 27430516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of ethylene glycol in Escherichia coli.
    Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3409-17. PubMed ID: 23233208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.
    Wang J; Jain R; Shen X; Sun X; Cheng M; Liao JC; Yuan Q; Yan Y
    Metab Eng; 2017 Mar; 40():148-156. PubMed ID: 28215518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli].
    Sun L; Yang F; Zhu T; Li X; Sun H; Li Y; Xu Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):51-63. PubMed ID: 27363198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae.
    Salusjärvi L; Toivari M; Vehkomäki ML; Koivistoinen O; Mojzita D; Niemelä K; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8151-8163. PubMed ID: 29038973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass.
    Cabulong RB; Lee WK; Bañares AB; Ramos KRM; Nisola GM; Valdehuesa KNG; Chung WJ
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2179-2189. PubMed ID: 29392388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli.
    Cabulong RB; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Lee CR; Chung WJ
    Enzyme Microb Technol; 2017 Feb; 97():11-20. PubMed ID: 28010767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.