These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27702485)

  • 21. Biosynthesis of D-1,2,4-butanetriol promoted by a glucose-xylose dual metabolic channel system in engineered Escherichia coli.
    Zhang L; Wang J; Gu S; Liu X; Hou M; Zhang J; Yang G; Zhao D; Dong R; Gao H
    N Biotechnol; 2024 Jun; 83():26-35. PubMed ID: 38936658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production.
    Li J; Xia Y; Wei B; Shen W; Yang H; Chen X
    Biochem Biophys Res Commun; 2024 May; 710():149876. PubMed ID: 38579537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.
    Abdel-Ghany SE; Day I; Heuberger AL; Broeckling CD; Reddy AS
    Metab Eng; 2013 Nov; 20():109-20. PubMed ID: 24126081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase.
    Miki Y; Asano Y
    Appl Environ Microbiol; 2014 Nov; 80(21):6828-36. PubMed ID: 25172862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes.
    Ma X; Sun C; Xian M; Guo J; Zhang R
    World J Microbiol Biotechnol; 2024 Jan; 40(2):68. PubMed ID: 38200399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving alkane synthesis in Escherichia coli via metabolic engineering.
    Song X; Yu H; Zhu K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):757-67. PubMed ID: 26476644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of Optically Pure (
    Cao Y; Niu W; Guo J; Guo J; Liu H; Liu H; Xian M
    J Agric Food Chem; 2023 Dec; 71(50):20167-20176. PubMed ID: 38088131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of an engineered Escherichia coli by a combinatorial strategy to improve 3,4-dihydroxybutyric acid production.
    Liu Y; Mao X; Zhang B; Lin J; Wei D
    Biotechnol Lett; 2021 Oct; 43(10):2035-2043. PubMed ID: 34448097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol Bioeng; 2017 Sep; 114(9):1928-1936. PubMed ID: 28498544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Biosynthesis of D-1,2,4-Butanetriol From d-Arabinose With an Engineered
    Wang J; Chen Q; Wang X; Chen K; Ouyang P
    Front Bioeng Biotechnol; 2022; 10():844517. PubMed ID: 35402410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.
    Rodriguez GM; Atsumi S
    Metab Eng; 2014 Sep; 25():227-37. PubMed ID: 25108218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol.
    Niu W; Molefe MN; Frost JW
    J Am Chem Soc; 2003 Oct; 125(43):12998-9. PubMed ID: 14570452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A synthetic O2 -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli.
    Pásztor A; Kallio P; Malatinszky D; Akhtar MK; Jones PR
    Biotechnol Bioeng; 2015 Jan; 112(1):120-8. PubMed ID: 24981220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli.
    Alkim C; Cam Y; Trichez D; Auriol C; Spina L; Vax A; Bartolo F; Besse P; François JM; Walther T
    Microb Cell Fact; 2015 Sep; 14():127. PubMed ID: 26336892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.
    Zhang H; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3333-41. PubMed ID: 23179615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced biosynthesis of 3,4-dihydroxybutyric acid by engineered Escherichia coli in a dual-substrate system.
    Gao H; Gao Y; Dong R
    Bioresour Technol; 2017 Dec; 245(Pt A):794-800. PubMed ID: 28926911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.