These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27702500)
1. Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls. Yin J; Yuan T; Lu Y; Song K; Li H; Zhao G; Yin Y Carbohydr Polym; 2017 Jan; 155():163-172. PubMed ID: 27702500 [TBL] [Abstract][Full Text] [Related]
2. Changes of wood cell walls in response to hygro-mechanical steam treatment. Guo J; Song K; Salmén L; Yin Y Carbohydr Polym; 2015 Jan; 115():207-14. PubMed ID: 25439887 [TBL] [Abstract][Full Text] [Related]
3. Effect of steam treatment on the properties of wood cell walls. Yin Y; Berglund L; Salmén L Biomacromolecules; 2011 Jan; 12(1):194-202. PubMed ID: 21133402 [TBL] [Abstract][Full Text] [Related]
4. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Hänninen T; Kontturi E; Vuorinen T Phytochemistry; 2011 Oct; 72(14-15):1889-95. PubMed ID: 21632083 [TBL] [Abstract][Full Text] [Related]
5. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Agarwal UP Planta; 2006 Oct; 224(5):1141-53. PubMed ID: 16761135 [TBL] [Abstract][Full Text] [Related]
6. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620 [TBL] [Abstract][Full Text] [Related]
7. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.). Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619 [TBL] [Abstract][Full Text] [Related]
8. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Inagaki T; Siesler HW; Mitsui K; Tsuchikawa S Biomacromolecules; 2010 Sep; 11(9):2300-5. PubMed ID: 20831273 [TBL] [Abstract][Full Text] [Related]
9. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood. Okon KE; Lin F; Chen Y; Huang B Carbohydr Polym; 2017 May; 164():179-185. PubMed ID: 28325315 [TBL] [Abstract][Full Text] [Related]
10. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Özgenç Ö; Durmaz S; Boyaci IH; Eksi-Kocak H Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():395-400. PubMed ID: 27569772 [TBL] [Abstract][Full Text] [Related]
11. Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood-Part I: Chemical Composition and Microstructure of the Cell Wall. Broda M; Popescu CM; Curling SF; Timpu DI; Ormondroyd GA Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407682 [TBL] [Abstract][Full Text] [Related]
12. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques. Zhang Z; Ma J; Ji Z; Xu F Microsc Microanal; 2012 Dec; 18(6):1459-66. PubMed ID: 23237521 [TBL] [Abstract][Full Text] [Related]
13. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Zhang J; Wang Y; Zhang L; Zhang R; Liu G; Cheng G Bioresour Technol; 2014 Jan; 151():402-5. PubMed ID: 24269347 [TBL] [Abstract][Full Text] [Related]
14. Lignin isolated from steam-exploded eucalyptus wood chips by phase separation and its affinity to Trichoderma reesei cellulase. Nonaka H; Kobayashi A; Funaoka M Bioresour Technol; 2013 Jul; 140():431-4. PubMed ID: 23711881 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties. Djafari Petroudy SR; Rahmani N; Rasooly Garmaroody E; Rudi H; Ramezani O Int J Biol Macromol; 2019 Aug; 135():512-520. PubMed ID: 31152834 [TBL] [Abstract][Full Text] [Related]
16. Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. Derome D; Griffa M; Koebel M; Carmeliet J J Struct Biol; 2011 Jan; 173(1):180-90. PubMed ID: 20797439 [TBL] [Abstract][Full Text] [Related]
17. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy. Popescu CM; Larsson PT; Tibirna CM; Vasile C Appl Spectrosc; 2010 Sep; 64(9):1054-60. PubMed ID: 20828443 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence-Detected Linear Dichroism of Wood Cell Walls in Juvenile Serbian Spruce: Estimation of Compression Wood Severity. Savić A; Mitrović A; Donaldson L; Simonović Radosavljević J; Bogdanović Pristov J; Steinbach G; Garab G; Radotić K Microsc Microanal; 2016 Apr; 22(2):361-7. PubMed ID: 26858105 [TBL] [Abstract][Full Text] [Related]
19. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Poletto M; Zattera AJ; Forte MM; Santana RM Bioresour Technol; 2012 Apr; 109():148-53. PubMed ID: 22306076 [TBL] [Abstract][Full Text] [Related]
20. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Gierlinger N; Schwanninger M; Reinecke A; Burgert I Biomacromolecules; 2006 Jul; 7(7):2077-81. PubMed ID: 16827572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]