These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 27702531)
1. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Vasconcelos NF; Feitosa JP; da Gama FM; Morais JP; Andrade FK; de Souza Filho MS; Rosa MF Carbohydr Polym; 2017 Jan; 155():425-431. PubMed ID: 27702531 [TBL] [Abstract][Full Text] [Related]
2. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization. Arserim-Uçar DK; Korel F; Liu L; Yam KL Food Chem; 2021 Jan; 336():127597. PubMed ID: 32763732 [TBL] [Abstract][Full Text] [Related]
3. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. George J; Ramana KV; Bawa AS; Siddaramaiah Int J Biol Macromol; 2011 Jan; 48(1):50-7. PubMed ID: 20920524 [TBL] [Abstract][Full Text] [Related]
4. Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators for lithium-ion batteries. Ajkidkarn P; Manuspiya H Int J Biol Macromol; 2020 Dec; 164():3580-3588. PubMed ID: 32890559 [TBL] [Abstract][Full Text] [Related]
5. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Reiniati I; Hrymak AN; Margaritis A Crit Rev Biotechnol; 2017 Jun; 37(4):510-524. PubMed ID: 27248159 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Salari M; Sowti Khiabani M; Rezaei Mokarram R; Ghanbarzadeh B; Samadi Kafil H Int J Biol Macromol; 2019 Feb; 122():280-288. PubMed ID: 30342939 [TBL] [Abstract][Full Text] [Related]
7. The influences of added polysaccharides on the properties of bacterial crystalline nanocellulose. Chi K; Catchmark JM Nanoscale; 2017 Oct; 9(39):15144-15158. PubMed ID: 28972619 [TBL] [Abstract][Full Text] [Related]
8. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Beck-Candanedo S; Roman M; Gray DG Biomacromolecules; 2005; 6(2):1048-54. PubMed ID: 15762677 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability. Sukhavattanakul P; Manuspiya H Carbohydr Polym; 2020 Feb; 230():115566. PubMed ID: 31887883 [TBL] [Abstract][Full Text] [Related]
10. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Hirai A; Inui O; Horii F; Tsuji M Langmuir; 2009 Jan; 25(1):497-502. PubMed ID: 19055323 [TBL] [Abstract][Full Text] [Related]
11. Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. Xiao Y; Liu Y; Wang X; Li M; Lei H; Xu H Int J Biol Macromol; 2019 Nov; 140():225-233. PubMed ID: 31437495 [TBL] [Abstract][Full Text] [Related]
12. Sunflower oil cake-derived cellulose nanocrystals: Extraction, physico-chemical characteristics and potential application. Kassab Z; El Achaby M; Tamraoui Y; Sehaqui H; Bouhfid R; Qaiss AEK Int J Biol Macromol; 2019 Sep; 136():241-252. PubMed ID: 31195048 [TBL] [Abstract][Full Text] [Related]
13. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples. Zhai X; Lin D; Li W; Yang X Int J Biol Macromol; 2020 Apr; 149():178-186. PubMed ID: 31982531 [TBL] [Abstract][Full Text] [Related]
14. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806 [TBL] [Abstract][Full Text] [Related]
15. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis. Shaheen TI; Emam HE Int J Biol Macromol; 2018 Feb; 107(Pt B):1599-1606. PubMed ID: 28988844 [TBL] [Abstract][Full Text] [Related]
16. Influence of mechanical pretreatment to isolate cellulose nanocrystals by sulfuric acid hydrolysis. Pirich CL; Picheth GF; Machado JPE; Sakakibara CN; Martin AA; de Freitas RA; Sierakowski MR Int J Biol Macromol; 2019 Jun; 130():622-626. PubMed ID: 30831162 [TBL] [Abstract][Full Text] [Related]
17. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Kasiri N; Fathi M Int J Biol Macromol; 2018 Jan; 106():1023-1031. PubMed ID: 28842201 [TBL] [Abstract][Full Text] [Related]
18. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Ul-Islam M; Khan T; Park JK Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931 [TBL] [Abstract][Full Text] [Related]
19. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. El Achaby M; Kassab Z; Aboulkas A; Gaillard C; Barakat A Int J Biol Macromol; 2018 Jan; 106():681-691. PubMed ID: 28823511 [TBL] [Abstract][Full Text] [Related]
20. Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose. Pawcenis D; Leśniak M; Szumera M; Sitarz M; Profic-Paczkowska J Int J Biol Macromol; 2022 Dec; 222(Pt B):1996-2005. PubMed ID: 36208805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]