These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27702648)
1. Probing pain pathways with light. Wang F; Bélanger E; Paquet ME; Côté DC; De Koninck Y Neuroscience; 2016 Dec; 338():248-271. PubMed ID: 27702648 [TBL] [Abstract][Full Text] [Related]
2. Epidural optogenetics for controlled analgesia. Bonin RP; Wang F; Desrochers-Couture M; Ga Secka A; Boulanger ME; Côté DC; De Koninck Y Mol Pain; 2016; 12():. PubMed ID: 27030718 [TBL] [Abstract][Full Text] [Related]
3. Optical developments for optogenetics. Papagiakoumou E Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010 [TBL] [Abstract][Full Text] [Related]
5. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders. Cho KK; Sohal VS Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218 [TBL] [Abstract][Full Text] [Related]
6. Miniaturized optogenetic neural implants: a review. Fan B; Li W Lab Chip; 2015 Oct; 15(19):3838-55. PubMed ID: 26308721 [TBL] [Abstract][Full Text] [Related]
7. Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain. Daou I; Beaudry H; Ase AR; Wieskopf JS; Ribeiro-da-Silva A; Mogil JS; Séguéla P eNeuro; 2016; 3(1):. PubMed ID: 27022626 [TBL] [Abstract][Full Text] [Related]
8. Tissue Transparency In Vivo. Inyushin M; Meshalkina D; Zueva L; Zayas-Santiago A Molecules; 2019 Jun; 24(13):. PubMed ID: 31261621 [TBL] [Abstract][Full Text] [Related]
9. Optogenetic exploration and modulation of pain processing. Xie YF; Wang J; Bonin RP Exp Neurol; 2018 Aug; 306():117-121. PubMed ID: 29729250 [TBL] [Abstract][Full Text] [Related]
10. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638 [TBL] [Abstract][Full Text] [Related]
11. Surgical preparations, labeling strategies, and optical techniques for cell-resolved, in vivo imaging in the mouse spinal cord. Cheng YT; Lett KM; Schaffer CB Exp Neurol; 2019 Aug; 318():192-204. PubMed ID: 31095935 [TBL] [Abstract][Full Text] [Related]
12. Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology? Greenbaum A; Jang MJ; Challis C; Gradinaru V BMC Biol; 2017 Sep; 15(1):87. PubMed ID: 28946882 [TBL] [Abstract][Full Text] [Related]
14. Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity-at Depth and in Real Time. Moreaux LC; Yatsenko D; Sacher WD; Choi J; Lee C; Kubat NJ; Cotton RJ; Boyden ES; Lin MZ; Tian L; Tolias AS; Poon JKS; Shepard KL; Roukes ML Neuron; 2020 Oct; 108(1):66-92. PubMed ID: 33058767 [TBL] [Abstract][Full Text] [Related]
15. Moving from an averaged to specific view of spinal cord pain processing circuits. Graham BA; Brichta AM; Callister RJ J Neurophysiol; 2007 Sep; 98(3):1057-63. PubMed ID: 17567772 [TBL] [Abstract][Full Text] [Related]
16. Flexible fiber-based optoelectronics for neural interfaces. Park S; Loke G; Fink Y; Anikeeva P Chem Soc Rev; 2019 Mar; 48(6):1826-1852. PubMed ID: 30815657 [TBL] [Abstract][Full Text] [Related]
17. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences. Jänig W; Häbler HJ Acta Physiol Scand; 2003 Mar; 177(3):255-74. PubMed ID: 12608996 [TBL] [Abstract][Full Text] [Related]
18. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? Tracey I; Bushnell MC J Pain; 2009 Nov; 10(11):1113-20. PubMed ID: 19878862 [TBL] [Abstract][Full Text] [Related]
19. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]