These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 27702688)
1. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling. Comelli RN; Seluy LG; Isla MA N Biotechnol; 2016 Dec; 33(6):874-882. PubMed ID: 27702688 [TBL] [Abstract][Full Text] [Related]
2. Wastewater from the soft drinks industry as a source for bioethanol production. Isla MA; Comelli RN; Seluy LG Bioresour Technol; 2013 May; 136():140-7. PubMed ID: 23567674 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a low-cost defined medium for alcoholic fermentation--a case study for potential application in bioethanol production from industrial wastewaters. Comelli RN; Seluy LG; Isla MA N Biotechnol; 2016 Jan; 33(1):107-15. PubMed ID: 26391675 [TBL] [Abstract][Full Text] [Related]
4. Feasiblity of Bioethanol Production from Cider Waste. Seluy LG; Comelli RN; Benzzo MT; Isla MA J Microbiol Biotechnol; 2018 Sep; 28(9):1493-1501. PubMed ID: 30086622 [TBL] [Abstract][Full Text] [Related]
5. Improvement of Brazilian bioethanol production - Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Paulino de Souza J; Dias do Prado C; Eleutherio ECA; Bonatto D; Malavazi I; Ferreira da Cunha A Fungal Biol; 2018 Jun; 122(6):583-591. PubMed ID: 29801803 [TBL] [Abstract][Full Text] [Related]
6. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
7. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. Lima-Costa ME; Tavares C; Raposo S; Rodrigues B; Peinado JM J Ind Microbiol Biotechnol; 2012 May; 39(5):789-97. PubMed ID: 22270889 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of biomass sugars to ethanol using native industrial yeast strains. Yuan D; Rao K; Relue P; Varanasi S Bioresour Technol; 2011 Feb; 102(3):3246-53. PubMed ID: 21129954 [TBL] [Abstract][Full Text] [Related]
10. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2. Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249 [TBL] [Abstract][Full Text] [Related]
11. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae. Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanol. Ferreira RM; Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA Food Res Int; 2019 Jan; 115():352-359. PubMed ID: 30599952 [TBL] [Abstract][Full Text] [Related]
13. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey. Rodrigues B; Lima-Costa ME; Constantino A; Raposo S; Felizardo C; Gonçalves D; Fernandes T; Dionísio L; Peinado JM Enzyme Microb Technol; 2016 Oct; 92():41-8. PubMed ID: 27542743 [TBL] [Abstract][Full Text] [Related]
14. Challenges for the production of bioethanol from biomass using recombinant yeasts. Kricka W; Fitzpatrick J; Bond U Adv Appl Microbiol; 2015; 92():89-125. PubMed ID: 26003934 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Mukherjee V; Steensels J; Lievens B; Van de Voorde I; Verplaetse A; Aerts G; Willems KA; Thevelein JM; Verstrepen KJ; Ruyters S Appl Microbiol Biotechnol; 2014 Nov; 98(22):9483-98. PubMed ID: 25267160 [TBL] [Abstract][Full Text] [Related]
16. Technological properties of indigenous wine yeast strains isolated from wine production regions of Turkey. Bağder Elmacı S; Özçelik F; Tokatlı M; Çakır İ Antonie Van Leeuwenhoek; 2014 May; 105(5):835-47. PubMed ID: 24549515 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Wimalasena TT; Greetham D; Marvin ME; Liti G; Chandelia Y; Hart A; Louis EJ; Phister TG; Tucker GA; Smart KA Microb Cell Fact; 2014 Mar; 13(1):47. PubMed ID: 24670111 [TBL] [Abstract][Full Text] [Related]
18. Mathematical modelling of bioethanol production from algal starch hydrolysate by Saccharomyces cerevisiae. Singh S; Chakravarty I; Kundu S Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):83-87. PubMed ID: 28968215 [TBL] [Abstract][Full Text] [Related]
19. Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines. Rodríguez-Palero MJ; Fierro-Risco J; Codón AC; Benítez T; Valcárcel MJ J Ind Microbiol Biotechnol; 2013 Jun; 40(6):613-23. PubMed ID: 23546810 [TBL] [Abstract][Full Text] [Related]