BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27703154)

  • 21. Population transcriptomic sequencing reveals allopatric divergence and local adaptation in Pseudotaxus chienii (Taxaceae).
    Liu L; Wang Z; Su Y; Wang T
    BMC Genomics; 2021 May; 22(1):388. PubMed ID: 34039278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana.
    Brachi B; Villoutreix R; Faure N; Hautekèete N; Piquot Y; Pauwels M; Roby D; Cuguen J; Bergelson J; Roux F
    Mol Ecol; 2013 Aug; 22(16):4222-4240. PubMed ID: 23875782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae).
    Bashalkhanov S; Eckert AJ; Rajora OP
    Mol Ecol; 2013 Dec; 22(23):5877-89. PubMed ID: 24118331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.
    Mattila TM; Aalto EA; Toivainen T; Niittyvuopio A; Piltonen S; Kuittinen H; Savolainen O
    Mol Ecol; 2016 Jan; 25(2):581-97. PubMed ID: 26600237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of redband trout in desert and montane environments.
    Narum SR; Campbell NR; Kozfkay CC; Meyer KA
    Mol Ecol; 2010 Nov; 19(21):4622-37. PubMed ID: 20880387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils.
    Sailer C; Babst-Kostecka A; Fischer MC; Zoller S; Widmer A; Vollenweider P; Gugerli F; Rellstab C
    Sci Rep; 2018 Oct; 8(1):16085. PubMed ID: 30382172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scale-dependent signatures of local adaptation in a foundation tree species.
    von Takach B; Ahrens CW; Lindenmayer DB; Banks SC
    Mol Ecol; 2021 May; 30(10):2248-2261. PubMed ID: 33740830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation to climate across the Arabidopsis thaliana genome.
    Hancock AM; Brachi B; Faure N; Horton MW; Jarymowycz LB; Sperone FG; Toomajian C; Roux F; Bergelson J
    Science; 2011 Oct; 334(6052):83-6. PubMed ID: 21980108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The search for loci under selection: trends, biases and progress.
    Ahrens CW; Rymer PD; Stow A; Bragg J; Dillon S; Umbers KDL; Dudaniec RY
    Mol Ecol; 2018 Mar; 27(6):1342-1356. PubMed ID: 29524276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Genome Scan for Genes Underlying Microgeographic-Scale Local Adaptation in a Wild Arabidopsis Species.
    Kubota S; Iwasaki T; Hanada K; Nagano AJ; Fujiyama A; Toyoda A; Sugano S; Suzuki Y; Hikosaka K; Ito M; Morinaga S
    PLoS Genet; 2015 Jul; 11(7):e1005361. PubMed ID: 26172569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps.
    Roschanski AM; Csilléry K; Liepelt S; Oddou-Muratorio S; Ziegenhagen B; Huard F; Ullrich KK; Postolache D; Vendramin GG; Fady B
    Mol Ecol; 2016 Feb; 25(3):776-94. PubMed ID: 26676992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.
    Tabas-Madrid D; Méndez-Vigo B; Arteaga N; Marcer A; Pascual-Montano A; Weigel D; Xavier Picó F; Alonso-Blanco C
    Plant Cell Environ; 2018 Aug; 41(8):1806-1820. PubMed ID: 29520809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Testing for associations between loci and environmental gradients using latent factor mixed models.
    Frichot E; Schoville SD; Bouchard G; François O
    Mol Biol Evol; 2013 Jul; 30(7):1687-99. PubMed ID: 23543094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.
    Fumagalli M; Sironi M; Pozzoli U; Ferrer-Admetlla A; Pattini L; Nielsen R
    PLoS Genet; 2011 Nov; 7(11):e1002355. PubMed ID: 22072984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signatures of natural selection in a foundation tree along Mediterranean climatic gradients.
    Filipe JC; Rymer PD; Byrne M; Hardy G; Mazanec R; Ahrens CW
    Mol Ecol; 2022 Mar; 31(6):1735-1752. PubMed ID: 35038378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modularity of genes involved in local adaptation to climate despite physical linkage.
    Lotterhos KE; Yeaman S; Degner J; Aitken S; Hodgins KA
    Genome Biol; 2018 Oct; 19(1):157. PubMed ID: 30290843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutral and Selective Processes Drive Population Differentiation for Iris hexagona.
    Hamlin JA; Arnold ML
    J Hered; 2015; 106(5):628-36. PubMed ID: 26163584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus).
    Harris SE; Munshi-South J
    Mol Ecol; 2017 Nov; 26(22):6336-6350. PubMed ID: 28980357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia.
    Ometto L; Li M; Bresadola L; Barbaro E; Neteler M; Varotto C
    PLoS One; 2015; 10(5):e0125199. PubMed ID: 25933225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change.
    Jordan R; Hoffmann AA; Dillon SK; Prober SM
    Mol Ecol; 2017 Nov; 26(21):6002-6020. PubMed ID: 28862778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.