These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27703180)

  • 61. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors.
    Zhu H; Fu Y; Meng F; Wu X; Gong Z; Ding Q; Gustafsson MV; Trinh MT; Jin S; Zhu XY
    Nat Mater; 2015 Jun; 14(6):636-42. PubMed ID: 25849532
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals.
    Chen J; Sun D; Luo J; Xiao J; Kang H; Zhang H; Cheng M; Zhang Q; Yin S
    Opt Lett; 2013 Apr; 38(8):1218-20. PubMed ID: 23595436
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.
    Kerridge-Johns WR; Damzen MJ
    Opt Express; 2018 Mar; 26(6):7771-7785. PubMed ID: 29609327
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities.
    Chen LJ; Dai JH; Lin JD; Mo TS; Lin HP; Yeh HC; Chuang YC; Jiang SA; Lee CR
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33307-33315. PubMed ID: 30198255
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT.
    Kumar SC; Ebrahim-Zadeh M
    Opt Express; 2011 Dec; 19(27):26660-5. PubMed ID: 22274250
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex.
    He GS; Zheng Q; Prasad PN; Grote JG; Hopkins FK
    Opt Lett; 2006 Feb; 31(3):359-61. PubMed ID: 16480208
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integrated diamond Raman laser pumped in the near-visible.
    Latawiec P; Venkataraman V; Shams-Ansari A; Markham M; Lončar M
    Opt Lett; 2018 Jan; 43(2):318-321. PubMed ID: 29328271
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1 nm and a InGaN laser diode at 444 nm.
    Xu B; Starecki F; Pabœuf D; Camy P; Doualan JL; Cai ZP; Braud A; Moncorgé R; Goldner P; Bretenaker F
    Opt Express; 2013 Mar; 21(5):5567-74. PubMed ID: 23482128
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative study on the acousto-optic Q-switched pulse performances of 1520 and 1560 nm lasers in Er:Yb:RAl3(BO3)4 (R = Y and Lu) crystals.
    Chen Y; Lin Y; Huang J; Gong X; Luo Z; Huang Y
    Opt Express; 2013 Aug; 21(16):18919-26. PubMed ID: 23938804
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Low threshold room-temperature lasing of CdS nanowires.
    Geburt S; Thielmann A; Röder R; Borschel C; McDonnell A; Kozlik M; Kühnel J; Sunter KA; Capasso F; Ronning C
    Nanotechnology; 2012 Sep; 23(36):365204. PubMed ID: 22910065
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source.
    Al Tal F; Dimas C; Hu J; Agarwal A; Kimerling LC
    Opt Express; 2011 Jun; 19(13):11951-62. PubMed ID: 21716429
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 940  mW 1564  nm multi-longitudinal-mode and 440  mW 1537  nm single-longitudinal-mode continuous-wave Er:Yb:Lu
    Huang J; Chen Y; Lin Y; Gong X; Luo Z; Huang Y
    Opt Lett; 2018 Apr; 43(8):1643-1646. PubMed ID: 29652329
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhancement of 1.5 μm fluorescence signal from Er
    Rakov N; Maciel GS
    Methods Appl Fluoresc; 2018 Nov; 7(1):015003. PubMed ID: 30256766
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Laser demonstration of diode-laser-pumped neodymium-doped strontium fluorovanadate.
    Shen D; Wang C; Shao Z; Meng X; Jiang M
    Appl Opt; 1996 Apr; 35(12):2023-5. PubMed ID: 21085328
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Midwavelength Infrared Colloidal Nanowire Laser.
    Kim G; Choi D; Chae SY; Bera R; Park S; Lee J; Min SH; Choi HK; Kim J; Huh J; Choi K; Lim M; Kim HI; Cho M; Jeong KS
    J Phys Chem Lett; 2022 Feb; 13(6):1431-1437. PubMed ID: 35119872
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation.
    Liu Z; Yin L; Ning H; Yang Z; Tong L; Ning CZ
    Nano Lett; 2013 Oct; 13(10):4945-50. PubMed ID: 24016196
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On-chip green silica upconversion microlaser.
    Lu T; Yang L; van Loon RV; Polman A; Vahala KJ
    Opt Lett; 2009 Feb; 34(4):482-4. PubMed ID: 19373348
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Room-temperature Near-infrared Excitonic Lasing from Mechanically Exfoliated InSe Microflake.
    Li C; Zhao L; Shang Q; Wang R; Bai P; Zhang J; Gao Y; Cao Q; Wei Z; Zhang Q
    ACS Nano; 2022 Jan; 16(1):1477-1485. PubMed ID: 34928140
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ultrafast plasmonic lasing from a metal/semiconductor interface.
    Wang J; Jia X; Wang Z; Liu W; Zhu X; Huang Z; Yu H; Yang Q; Sun Y; Wang Z; Qu S; Lin J; Jin P; Wang Z
    Nanoscale; 2020 Aug; 12(31):16403-16408. PubMed ID: 32525164
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides.
    Chen F; Wang J; Ye C; Ni W; Chan J; Yang Y; Lo D
    Opt Express; 2005 Mar; 13(5):1643-50. PubMed ID: 19495040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.