These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27703206)

  • 1. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network.
    Moriyama T; Tanaka S; Nakayama Y; Fukumoto M; Tsujimura K; Yamada K; Bamba T; Yoneda Y; Fukusaki E; Oka M
    Sci Rep; 2016 Oct; 6():34648. PubMed ID: 27703206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of IRE1 modifies hypoxic regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes expression in U87 glioma cells.
    Minchenko OH; Garmash IA; Minchenko DO; Kuznetsova AY; Ratushna OO
    Ukr Biochem J; 2017; 89(1):38-49. PubMed ID: 29236388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human transaldolase gene (TALDO1) is located on chromosome 11 at p15.4-p15.5.
    Banki K; Eddy RL; Shows TB; Halladay DL; Bullrich F; Croce CM; Jurecic V; Baldini A; Perl A
    Genomics; 1997 Oct; 45(1):233-8. PubMed ID: 9339383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two independent mechanisms promote expression of an N-terminal truncated USP18 isoform with higher DeISGylation activity in the nucleus.
    Burkart C; Fan JB; Zhang DE
    J Biol Chem; 2012 Feb; 287(7):4883-93. PubMed ID: 22170061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of talA gene in pentose phosphate pathway for overproduction of poly-beta-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon.
    Song BG; Kim TK; Jung YM; Lee YH
    J Biosci Bioeng; 2006 Sep; 102(3):237-40. PubMed ID: 17046540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel heterozygous mutations in TALDO1 gene causing transaldolase deficiency and early infantile liver failure.
    Balasubramaniam S; Wamelink MM; Ngu LH; Talib A; Salomons GS; Jakobs C; Keng WT
    J Pediatr Gastroenterol Nutr; 2011 Jan; 52(1):113-6. PubMed ID: 21119539
    [No Abstract]   [Full Text] [Related]  

  • 8. Hypergonadotrophic hypogonadism in a patient with transaldolase deficiency: novel mutation in the pentose phosphate pathway.
    Lafcı NG; Colak FK; Sahin G; Sakar M; Çetinkaya S; Savas-Erdeve S
    Hormones (Athens); 2021 Sep; 20(3):581-585. PubMed ID: 33159679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing.
    Qian Y; Banerjee S; Grossman CE; Amidon W; Nagy G; Barcza M; Niland B; Karp DR; Middleton FA; Banki K; Perl A
    Biochem J; 2008 Oct; 415(1):123-34. PubMed ID: 18498245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transaldolase: from biochemistry to human disease.
    Samland AK; Sprenger GA
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1482-94. PubMed ID: 19401148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of fragments of translation initiation factor eIF4GI reveals a nuclear localisation signal within the N-terminal apoptotic cleavage fragment N-FAG.
    Coldwell MJ; Hashemzadeh-Bonehi L; Hinton TM; Morley SJ; Pain VM
    J Cell Sci; 2004 May; 117(Pt 12):2545-55. PubMed ID: 15128869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent Acetaminophen Toxicity in a Patient with Transaldolase Deficiency.
    Lee-Barber J; English TE; Britton JF; Sobreira N; Goldstein J; Valle D; Bjornsson HT
    JIMD Rep; 2019; 44():9-15. PubMed ID: 29923087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extent of pre-translational regulation for the control of nucleocytoplasmic protein localization.
    Luce MJ; Akpawu AA; Tucunduva DC; Mason S; Scott MS
    BMC Genomics; 2016 Jun; 17():472. PubMed ID: 27342569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the 5' flanking region of the human G6PC3 gene: regulation of promoter activity by glucose, pyruvate, AMP kinase and the pentose phosphate pathway.
    Bennett KA; Forsyth L; Burchell A
    Mol Genet Metab; 2011 Jul; 103(3):254-61. PubMed ID: 21474354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability.
    Al-Shamsi AM; Ben-Salem S; Hertecant J; Al-Jasmi F
    Eur J Pediatr; 2015 May; 174(5):661-8. PubMed ID: 25388407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathogenesis of transaldolase deficiency.
    Perl A
    IUBMB Life; 2007 Jun; 59(6):365-73. PubMed ID: 17613166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression, distinct localization and opposite effect on Golgi structure and cell differentiation by a novel splice variant of human PRMT5.
    Sohail M; Zhang M; Litchfield D; Wang L; Kung S; Xie J
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2444-52. PubMed ID: 26151339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.
    van Winden WA; van Gulik WM; Schipper D; Verheijen PJ; Krabben P; Vinke JL; Heijnen JJ
    Biotechnol Bioeng; 2003 Jul; 83(1):75-92. PubMed ID: 12740935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 zeta.
    van Hemert MJ; Niemantsverdriet M; Schmidt T; Backendorf C; Spaink HP
    J Cell Sci; 2004 Mar; 117(Pt 8):1411-20. PubMed ID: 14996909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.