These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27703591)
1. Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies. Lee LM; Lee JW; Chase D; Gebrezgiabhier D; Liu AP Biomicrofluidics; 2016 Sep; 10(5):054105. PubMed ID: 27703591 [TBL] [Abstract][Full Text] [Related]
2. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels. Lee LM; Liu AP Lab Chip; 2015 Jan; 15(1):264-73. PubMed ID: 25361042 [TBL] [Abstract][Full Text] [Related]
3. A Microfluidic Micropipette Aspiration Device to Study Single-Cell Mechanics Inspired by the Principle of Wheatstone Bridge. Li YJ; Yang YN; Zhang HJ; Xue CD; Zeng DP; Cao T; Qin KR Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30781497 [TBL] [Abstract][Full Text] [Related]
4. On-chip surface acoustic wave and micropipette aspiration techniques to assess cell elastic properties. Wu Y; Cheng T; Chen Q; Gao B; Stewart AG; Lee PVS Biomicrofluidics; 2020 Jan; 14(1):014114. PubMed ID: 32095200 [TBL] [Abstract][Full Text] [Related]
6. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip. Boot RC; Roscani A; van Buren L; Maity S; Koenderink GH; Boukany PE Lab Chip; 2023 Mar; 23(7):1768-1778. PubMed ID: 36809459 [TBL] [Abstract][Full Text] [Related]
7. The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells. Lee LM; Liu AP J Nanotechnol Eng Med; 2014 Nov; 5(4):0408011-408016. PubMed ID: 26155329 [TBL] [Abstract][Full Text] [Related]
8. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. Haider MA; Guilak F J Biomech Eng; 2002 Oct; 124(5):586-95. PubMed ID: 12405602 [TBL] [Abstract][Full Text] [Related]
9. Mechanically activated artificial cell by using microfluidics. Ho KK; Lee LM; Liu AP Sci Rep; 2016 Sep; 6():32912. PubMed ID: 27610921 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic-based hydrodynamic trap for single particles. Johnson-Chavarria EM; Tanyeri M; Schroeder CM J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467 [TBL] [Abstract][Full Text] [Related]
11. Micropipette aspiration of substrate-attached cells to estimate cell stiffness. Oh MJ; Kuhr F; Byfield F; Levitan I J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713 [TBL] [Abstract][Full Text] [Related]
12. Design and fabrication of aspiration microfluidic channel for oocyte characterization. Saffari H; Hajiaghalou S; Hajari MA; Gourabi H; Fathi D; Fathi R Talanta; 2023 Mar; 254():124098. PubMed ID: 36462279 [TBL] [Abstract][Full Text] [Related]
13. A microfluidic device enabling deterministic single cell trapping and release. Chai H; Feng Y; Liang F; Wang W Lab Chip; 2021 Jun; 21(13):2486-2494. PubMed ID: 34047733 [TBL] [Abstract][Full Text] [Related]
14. A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel. Raj A; Dixit M; Doble M; Sen AK Lab Chip; 2017 Oct; 17(21):3704-3716. PubMed ID: 28983550 [TBL] [Abstract][Full Text] [Related]
15. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells. Ho KKY; Wang YL; Wu J; Liu AP Front Bioeng Biotechnol; 2018; 6():148. PubMed ID: 30386779 [TBL] [Abstract][Full Text] [Related]
16. A microfluidic device for simultaneous electrical and mechanical measurements on single cells. Chen J; Zheng Y; Tan Q; Zhang YL; Li J; Geddie WR; Jewett MA; Sun Y Biomicrofluidics; 2011 Mar; 5(1):14113. PubMed ID: 21523251 [TBL] [Abstract][Full Text] [Related]
17. Parameter screening in microfluidics based hydrodynamic single-cell trapping. Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect. Lee J; Jeong JS; Shung KK Ultrasonics; 2013 Jan; 53(1):249-54. PubMed ID: 22824623 [TBL] [Abstract][Full Text] [Related]
19. A microfluidic device enabling high-efficiency single cell trapping. Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513 [TBL] [Abstract][Full Text] [Related]
20. Performance optimization of a DLD microfluidic device for separating deformable CTCs. Mohammadali R; Bayareh M; Nadooshan AA Electrophoresis; 2024 Oct; 45(19-20):1775-1784. PubMed ID: 39140230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]