These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27703592)

  • 1. Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing.
    Ang KM; Yeo LY; Hung YM; Tan MK
    Biomicrofluidics; 2016 Sep; 10(5):054106. PubMed ID: 27703592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustically Driven Micromixing: Effect of Transducer Geometry.
    Lim E; Lee L; Yeo LY; Hung YM; Tan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1387-1394. PubMed ID: 31180889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Generation of Vortical Flows for Microfluidic Centrifugation.
    Ahmed H; Ramesan S; Lee L; Rezk AR; Yeo LY
    Small; 2020 Mar; 16(9):e1903605. PubMed ID: 31535785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems.
    Ahmed D; Peng X; Ozcelik A; Zheng Y; Huang TJ
    AIP Adv; 2015 Sep; 5(9):097161. PubMed ID: 26421224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast microfluidics using surface acoustic waves.
    Yeo LY; Friend JR
    Biomicrofluidics; 2009 Jan; 3(1):12002. PubMed ID: 19693383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streaming-enhanced, chip-based biosensor with acoustically active, biomarker-functionalized micropillars: A case study of thrombin detection.
    Zhou M; Gao D; Yang Z; Zhou C; Tan Y; Wang W; Jiang Y
    Talanta; 2021 Jan; 222():121480. PubMed ID: 33167205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward complete miniaturisation of flow injection analysis systems: microfluidic enhancement of chemiluminescent detection.
    Gracioso Martins AM; Glass NR; Harrison S; Rezk AR; Porter NA; Carpenter PD; Du Plessis J; Friend JR; Yeo LY
    Anal Chem; 2014 Nov; 86(21):10812-9. PubMed ID: 25275830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Enhancement of Cellular Spheroid Assembly by Acoustically Driven Microcentrifugation.
    Alhasan L; Qi A; Al-Abboodi A; Rezk A; Chan PPY; Iliescu C; Yeo LY
    ACS Biomater Sci Eng; 2016 Jun; 2(6):1013-1022. PubMed ID: 33429510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.
    Roux-Marchand T; Beyssen D; Sarry F; Elmazria O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):729-35. PubMed ID: 25881350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency effects on the scale and behavior of acoustic streaming.
    Dentry MB; Yeo LY; Friend JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013203. PubMed ID: 24580352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.
    Shilton RJ; Travagliati M; Beltram F; Cecchini M
    Adv Mater; 2014 Aug; 26(29):4941-6. PubMed ID: 24677370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology.
    Li Y; Fu YQ; Brodie SD; Alghane M; Walton AJ
    Biomicrofluidics; 2012 Mar; 6(1):12812-128129. PubMed ID: 22662079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Triggered Merging of Surfactant-Stabilized Droplet Pairs Using Traveling Surface Acoustic Waves.
    Bussiere V; Vigne A; Link A; McGrath J; Srivastav A; Baret JC; Franke T
    Anal Chem; 2019 Nov; 91(21):13978-13985. PubMed ID: 31576738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.