BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27704188)

  • 1. Toxicity of CuO Nanoparticles to Structure and Metabolic Activity of Allium cepa Root Tips.
    Deng F; Wang S; Xin H
    Bull Environ Contam Toxicol; 2016 Nov; 97(5):702-708. PubMed ID: 27704188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of different copper oxide particles on cell division and related genes of soybean roots.
    Liu C; Yu Y; Liu H; Xin H
    Plant Physiol Biochem; 2021 Jun; 163():205-214. PubMed ID: 33862500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice].
    Wang SL; Zhang YX; Liu HZ; Xin H
    Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb.
    Ahmed B; Shahid M; Khan MS; Musarrat J
    Metallomics; 2018 Sep; 10(9):1315-1327. PubMed ID: 30141802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.
    Wang S; Liu H; Zhang Y; Xin H
    Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage.
    Qin R; Wang C; Chen D; Björn LO; Li S
    Environ Toxicol Chem; 2015 May; 34(5):1045-55. PubMed ID: 25639377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper oxide nanoparticles alter cellular morphology via disturbing the actin cytoskeleton dynamics in
    Jia H; Chen S; Wang X; Shi C; Liu K; Zhang S; Li J
    Nanotoxicology; 2020 Feb; 14(1):127-144. PubMed ID: 31684790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol ameliorates the physiological, biochemical, cytogenetic, and anatomical toxicities induced by copper(II) chloride exposure in Allium cepa L.
    Macar TK; Macar O; Yalçın E; Çavuşoğlu K
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):657-667. PubMed ID: 31808086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of fungicide benomyl (benlate) on growth and mitosis in onion (Allium cepa L.) root apical meristem.
    Dane F; Dalgiç O
    Acta Biol Hung; 2005; 56(1-2):119-28. PubMed ID: 15813220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective role of green tea against paraquat toxicity in Allium cepa L.: physiological, cytogenetic, biochemical, and anatomical assessment.
    Yirmibeş F; Yalçin E; Çavuşoğlu K
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):23794-23805. PubMed ID: 34816348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the metabolites in apical area of Allium cepa roots by high resolution NMR spectroscopy method.
    Budantsev AY; Uversky VN; Kutyshenko VP
    Protein Pept Lett; 2010 Jan; 17(1):86-91. PubMed ID: 20214631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa.
    Kumari M; Khan SS; Pakrashi S; Mukherjee A; Chandrasekaran N
    J Hazard Mater; 2011 Jun; 190(1-3):613-21. PubMed ID: 21501923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L.
    Qin R; Jiao Y; Zhang S; Jiang W; Liu D
    BMC Plant Biol; 2010 Oct; 10():225. PubMed ID: 20964828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles.
    Wang Y; Deng C; Cota-Ruiz K; Peralta-Videa JR; Sun Y; Rawat S; Tan W; Reyes A; Hernandez-Viezcas JA; Niu G; Li C; Gardea-Torresdey JL
    Sci Total Environ; 2020 Jul; 725():138387. PubMed ID: 32298898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phytotoxicity of colloidal solutions of metal-containing nanoparticles].
    Konotop IeO; Kovalenko MS; Ulynets' VZ; Meleshko AO; Batsmanova LM; Taran NIu
    Tsitol Genet; 2014; 48(2):37-42. PubMed ID: 24818509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana.
    Tang Y; He R; Zhao J; Nie G; Xu L; Xing B
    Environ Pollut; 2016 May; 212():605-614. PubMed ID: 27016889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles.
    Mangalampalli B; Dumala N; Grover P
    J Environ Sci (China); 2018 Apr; 66():125-137. PubMed ID: 29628079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses.
    Zhao J; Ren W; Dai Y; Liu L; Wang Z; Yu X; Zhang J; Wang X; Xing B
    Environ Sci Technol; 2017 Jul; 51(13):7686-7695. PubMed ID: 28586199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa).
    Wang X; Sun W; Ma X
    Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.