These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27704470)

  • 1. Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast.
    Ito R; Kuroda K; Hashimoto H; Ueda M
    AMB Express; 2016 Dec; 6(1):88. PubMed ID: 27704470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of platinum (IV) ions to elemental platinum nanoparticles by anaerobic sludge.
    Simon-Pascual A; Sierra-Alvarez R; Ramos-Ruiz A; Field JA
    J Chem Technol Biotechnol; 2018 Jun; 93(6):1611-1617. PubMed ID: 30140114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria.
    Maes S; Props R; Fitts JP; Smet RD; Vilchez-Vargas R; Vital M; Pieper DH; Vanhaecke F; Boon N; Hennebel T
    Environ Sci Technol; 2016 Mar; 50(5):2619-26. PubMed ID: 26854514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum(II) reduction to platinum nanoparticles in anaerobic sludge.
    Simon-Pascual A; Sierra-Alvarez R; Field JA
    J Chem Technol Biotechnol; 2019 Feb; 94(2):468-474. PubMed ID: 31105372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of metals and metal ions by hydrogenases from phototrophic bacteria.
    Zadvorny OA; Zorin NA; Gogotov IN
    Arch Microbiol; 2006 Jan; 184(5):279-85. PubMed ID: 16283252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies.
    Goulhen F; Gloter A; Guyot F; Bruschi M
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):892-7. PubMed ID: 16896506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bio-inspired Recovery of Platinum Nanoparticle and Its Mechanism].
    Shang R; Zhu NW; Kang NX; Shi CH
    Huan Jing Ke Xue; 2016 Jul; 37(7):2799-2806. PubMed ID: 29964493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization.
    Kiran MG; Pakshirajan K; Das G
    J Hazard Mater; 2017 Feb; 324(Pt A):62-70. PubMed ID: 26847522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioreduction of Pt (IV) from aqueous solution using sulphate-reducing bacteria.
    Rashamuse KJ; Whiteley CG
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1429-35. PubMed ID: 17453194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation mechanism of Pt particles by photoreduction of Pt ions in polymer solutions.
    Harada M; Einaga H
    Langmuir; 2006 Feb; 22(5):2371-7. PubMed ID: 16489831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of microorganisms towards recovery of rare metal ions.
    Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):53-60. PubMed ID: 20393699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green and Facile Synthesis of Pd-Pt Alloy Nanoparticles by Laser Irradiation of Aqueous Solution.
    Nakamura T; Sato S
    J Nanosci Nanotechnol; 2015 Jan; 15(1):426-32. PubMed ID: 26328375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation of α-Pinene over Platinum Nanoparticles Reduced and Stabilized by Sodium Lignosulfonate.
    Chen X; Yuan B; Yu F; Liu Y; Xie C; Yu S
    ACS Omega; 2020 Apr; 5(15):8902-8911. PubMed ID: 32337453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alchemy-Inspired Green Paper for Spontaneous Recovery of Noble Metals.
    Yao Y; Lan L; Li X; Liu X; Ying Y; Ping J
    Small; 2020 Aug; 16(33):e1907282. PubMed ID: 32583958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum recovery from industrial process streams by halophilic bacteria: Influence of salt species and platinum speciation.
    Maes S; Claus M; Verbeken K; Wallaert E; De Smet R; Vanhaecke F; Boon N; Hennebel T
    Water Res; 2016 Nov; 105():436-443. PubMed ID: 27665431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tl-Pt(CN)5 in the solid state--A multimethod study of an unusual compound containing inorganic wires.
    Jalilehvand F; Eriksson L; Glaser J; Maliarik M; Mink J; Sandström M; Tóth I; Tóth J
    Chemistry; 2001 May; 7(10):2167-77. PubMed ID: 11411989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogenases in sulfate-reducing bacteria function as chromium reductase.
    Chardin B; Giudici-Orticoni MT; De Luca G; Guigliarelli B; Bruschi M
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):315-21. PubMed ID: 12861426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.