BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27704556)

  • 1. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management.
    Carlson AK; Phelps QE; Graeb BD
    J Fish Biol; 2017 Feb; 90(2):505-527. PubMed ID: 27704556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All in the ears: unlocking the early life history biology and spatial ecology of fishes.
    Starrs D; Ebner BC; Fulton CJ
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):86-105. PubMed ID: 25424431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution otolith elemental signatures in eteline snappers from valuable deepwater tropical fisheries.
    Sih TL; Williams AJ; Hu Y; Kingsford MJ
    J Fish Biol; 2022 Jun; 100(6):1475-1496. PubMed ID: 35394647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of otolith chemistry to characterize diadromous migrations.
    Walther BD; Limburg KE
    J Fish Biol; 2012 Jul; 81(2):796-825. PubMed ID: 22803736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments.
    Aschenbrenner A; Ferreira BP; Rooker JR
    J Fish Biol; 2016 Jul; 89(1):753-69. PubMed ID: 27255666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring morphometric frontiers: A comprehensive study of otolith growth patterns in brown comber Serranus hepatus (Linnaeus, 1758).
    Castro-Gutiérrez J; Madera-Santana S; Rodríguez-García C; Domínguez-Bustos ÁR; Sarmiento-Carbajal J; Gonçalves-Neto JB; Cabrera-Castro R
    J Fish Biol; 2023 Dec; 103(6):1374-1381. PubMed ID: 37641164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing conflicts arising from fisheries enhancements based on non-native fishes in southern Africa.
    Ellender BR; Woodford DJ; Weyl OL; Cowx IG
    J Fish Biol; 2014 Dec; 85(6):1890-906. PubMed ID: 25256916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?
    Sturrock AM; Trueman CN; Darnaude AM; Hunter E
    J Fish Biol; 2012 Jul; 81(2):766-95. PubMed ID: 22803735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paradigm shifts in fish conservation: moving to the ecosystem services concept.
    Cowx IG; Portocarrero Aya M
    J Fish Biol; 2011 Dec; 79(6):1663-80. PubMed ID: 22136245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How ecological processes shape the outcomes of stock enhancement and harvest regulations in recreational fisheries.
    Johnston FD; Allen MS; Beardmore B; Riepe C; Pagel T; Hühn D; Arlinghaus R
    Ecol Appl; 2018 Dec; 28(8):2033-2054. PubMed ID: 30144215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking otolith microchemistry and dendritic isoscapes to map heterogeneous production of fish across river basins.
    Brennan SR; Schindler DE
    Ecol Appl; 2017 Mar; 27(2):363-377. PubMed ID: 27875020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otolith chemoscape analysis in whiting links fishing grounds to nursery areas.
    Burns NM; Hopkins CR; Bailey DM; Wright PJ
    Commun Biol; 2020 Nov; 3(1):690. PubMed ID: 33214649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global assessment of marine and freshwater recreational fish reveals mismatch in climate change vulnerability and conservation effort.
    Nyboer EA; Lin HY; Bennett JR; Gabriel J; Twardek W; Chhor AD; Daly L; Dolson S; Guitard E; Holder P; Mozzon CM; Trahan A; Zimmermann D; Kesner-Reyes K; Garilao C; Kaschner K; Cooke SJ
    Glob Chang Biol; 2021 Oct; 27(19):4799-4824. PubMed ID: 34289527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing ontogenetic habitat shifts in marine fishes: advancing nascent methods for marine spatial management.
    Galaiduk R; Radford BT; Saunders BJ; Newman SJ; Harvey ES
    Ecol Appl; 2017 Sep; 27(6):1776-1788. PubMed ID: 28452413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure to engage the public in issues related to inland fishes and fisheries: strategies for building public and political will to promote meaningful conservation.
    Cooke SJ; Lapointe NW; Martins EG; Thiem JD; Raby GD; Taylor MK; Beard TD; Cowx IG
    J Fish Biol; 2013 Oct; 83(4):997-1018. PubMed ID: 24090559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrinsic and intrinsic factors shape the ability of using otolith chemistry to characterize estuarine environmental histories.
    Reis-Santos P; Vasconcelos RP; Tanner SE; Fonseca VF; Cabral HN; Gillanders BM
    Mar Environ Res; 2018 Sep; 140():332-341. PubMed ID: 30251648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative reconstruction of salinity history by otolith oxygen stable isotopes: An example of a euryhaline fish Lateolabrax japonicus.
    Hsieh Y; Shiao JC; Lin SW; Iizuka Y
    Rapid Commun Mass Spectrom; 2019 Aug; 33(16):1344-1354. PubMed ID: 31046159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.
    Izzo C; Doubleday ZA; Schultz AG; Woodcock SH; Gillanders BM
    J Fish Biol; 2015 Jun; 86(6):1680-98. PubMed ID: 26033292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engaging recreational fishers in management and conservation: global case studies.
    Granek EF; Madin EM; Brown MA; Figueira W; Cameron DS; Hogan Z; Kristianson G; de Villiers P; Williams JE; Post J; Zahn S; Arlinghaus R
    Conserv Biol; 2008 Oct; 22(5):1125-34. PubMed ID: 18637911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on the morphology and the composition of the otoliths in the teleosts.
    Yamauchi M; Tanaka J; Harada Y
    Acta Otolaryngol; 2008 Aug; 128(8):846-55. PubMed ID: 18607888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.