These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 27704783)
1. Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires. Wang Q; Liu R; Xiang D; Sun M; Zhao Z; Sun L; Mei T; Wu P; Liu H; Guo X; Li ZL; Lee T ACS Nano; 2016 Oct; 10(10):9695-9702. PubMed ID: 27704783 [TBL] [Abstract][Full Text] [Related]
3. Self-aligned formation of sub 1 nm gaps utilizing electromigration during metal deposition. Naitoh Y; Ohata T; Matsushita R; Okawa E; Horikawa M; Oyama M; Mukaida M; Wang DF; Kiguchi M; Tsukagoshi K; Ishida T ACS Appl Mater Interfaces; 2013 Dec; 5(24):12869-75. PubMed ID: 24274822 [TBL] [Abstract][Full Text] [Related]
4. A current-driven single-atom memory. Schirm C; Matt M; Pauly F; Cuevas JC; Nielaba P; Scheer E Nat Nanotechnol; 2013 Sep; 8(9):645-8. PubMed ID: 23995456 [TBL] [Abstract][Full Text] [Related]
9. Formation scheme of quantum point contacts based on nanogaps using field-emission-induced electromigration. Suda R; Yagi M; Watanabe T; Shirakashi J J Nanosci Nanotechnol; 2013 Feb; 13(2):883-7. PubMed ID: 23646535 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of atomic junctions with experimental parameters optimized using ground-state searches of Ising spin computing. Sakai S; Hirata Y; Ito M; Shirakashi JI Sci Rep; 2019 Nov; 9(1):16211. PubMed ID: 31700094 [TBL] [Abstract][Full Text] [Related]
13. High-Yield Functional Molecular Electronic Devices. Jeong H; Kim D; Xiang D; Lee T ACS Nano; 2017 Jul; 11(7):6511-6548. PubMed ID: 28578582 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration. Gee A; Jaafar AH; Kemp NT Nanotechnology; 2020 Apr; 31(15):155203. PubMed ID: 31860883 [TBL] [Abstract][Full Text] [Related]
15. Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices. Zhao Z; Liu R; Mayer D; Coppola M; Sun L; Kim Y; Wang C; Ni L; Chen X; Wang M; Li Z; Lee T; Xiang D Small; 2018 Apr; 14(15):e1703815. PubMed ID: 29542239 [TBL] [Abstract][Full Text] [Related]
16. A single-molecule porphyrin-based switch for graphene nano-gaps. Wu Q; Hou S; Sadeghi H; Lambert CJ Nanoscale; 2018 Apr; 10(14):6524-6530. PubMed ID: 29570203 [TBL] [Abstract][Full Text] [Related]
17. A non-oxidizing fabrication method for lithographic break junctions of sensitive metals. Nyáry A; Gubicza A; Overbeck J; Pósa L; Makk P; Calame M; Halbritter A; Csontos M Nanoscale Adv; 2020 Sep; 2(9):3829-3833. PubMed ID: 36132792 [TBL] [Abstract][Full Text] [Related]
18. Tuning of tunnel resistance of nanogaps by field-emission-induced electromigration using current source mode. Takiya K; Tomoda Y; Kume W; Ueno S; Watanabe T; Shirakashi J J Nanosci Nanotechnol; 2011 Jul; 11(7):6266-70. PubMed ID: 22121699 [TBL] [Abstract][Full Text] [Related]
19. Room-temperature-concerted switch made of a binary atom cluster. Inami E; Hamada I; Ueda K; Abe M; Morita S; Sugimoto Y Nat Commun; 2015 Feb; 6():6231. PubMed ID: 25656414 [TBL] [Abstract][Full Text] [Related]
20. In Situ Adjustable Nanogaps and In-Plane Break Junctions. Zhao X; Zhang X; Yin K; Zhang S; Zhao Z; Tan M; Xu X; Zhao Z; Wang M; Xu B; Lee T; Scheer E; Xiang D Small Methods; 2023 Apr; 7(4):e2201427. PubMed ID: 36732898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]